Advances in Applied Science Research Open Access

  • ISSN: 0976-8610
  • Journal h-index: 57
  • Journal CiteScore: 93.86
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Reach us +32 25889658

Abstract

Analysis of a dengue disease transmission model with vaccination

B. Singh, S. Jain, R. Khandelwal, Sneha Porwal and G. Ujjainkar

Soewono and Supriatna [9] studied a simple SIR dengue disease transmission model with vaccination. In the present paper we have modified the model with assumption that a random fraction of the recovered host population can loses the immunity and becomes susceptible again. The dynamics of the disease is studied by a compartmental model involving ordinary differential equations for the human and the mosquito populations. Restricting the dynamics for the constant host and vector populations, the model is reduced to a three-dimensional planar equation. Two states of equilibrium are studied, one disease-free and other endemic. The basic reproduction number 0 Â is obtained. In this model the disease-free equilibrium state is stable if Â0 £ 1 and if 0 Â > 1, the stable endemic equilibrium appears. Numerical simulation and graphical presentation are also provided to justify the stability