Biochemistry & Molecular Biology Journal Open Access

  • ISSN: 2471-8084
  • Journal h-index: 14
  • Journal CiteScore: 2.55
  • Journal Impact Factor: 1.74
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Reach us +32 25889658

Abstract

Analyzing the Efficacy of Phosphate Solubilizing Microorganisms by Enrichment Culture Techniques

Selvi KB, Paul JJA, Vijaya V and Saraswathi K

Phosphate solubilizing microorganisms (PSMs) were isolated from rhizoplane, rhizosphere and non-rhizosphere of different leguminous plants. To isolate efficient phosphate solubilizers the rhizosphere and non-rhizosphere soil samples were enriched with different phosphate sources like tricalcium and rock phosphate. PSMs were detected in all the regions, but their number gradually decreased from rhizosphere, rhizoplane and non-rhizosphere soil. When compared to fungal population, bacterial population was more in number. Tephrosia purpurea recorded the highest bacterial population of 30.15 × 106 cfu/g, 50.51 × 106 cfu/g and 21.10 × 106 cfu/g in the rhizoplane, rhizosphere and non-rhizosphere regions respectively. In enrichment culture technique, highest phosphate solubilizing bacterial population was recorded in the rhizosphere soil of Clitoria ternatea (23 × 103 cfu/g) in tricalcium phosphate containing Pikovskaya’s (PVK) medium. In a plate assay method solubilization zone diameter produced by microorganisms was varied from 0.2 cm to 1.0 cm. The phosphate solubilization ability of the isolated microorganisms in a liquid PVK medium varied from 11.85 mg to 61.96 mg P2O5. The medium turned acidic during the incubation period. The pH varied among the organisms from the initial 6.5 to the final 3.2 during 15 days of incubation. Citric acid, fumaric acid, gluconic acid, glutaric acid, glyoxalic acid, ketobutyric acid, ketoglutaric acid, malic acid, malonic acid, succinic acid and tartaric acid are produced by the isolated PSMs. Seed or soil inoculation with phosphate solubilizing bacteria (PSB) is known to improve solubilization of fixed and applied phosphates in soil bring about higher crop yield. The PSM are effective as biofertilizers in enhancing crop yields in phosphate deficient soils. They are environmentally friendly and supply phosphate to plants in a sustainable manner.