American Journal of Advanced Drug Delivery Open Access

  • ISSN: 2321-547X
  • Journal h-index: 22
  • Journal CiteScore: 9.36
  • Journal Impact Factor: 5.76
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Reach us +32 25889658

Abstract

Artificial T Cell Mimetics to Combat Melanoma Tumor Growth

Shilpaa Mukundan, Dongli Guan, Amy Singleton, Yunlong Yang, Matthew Li and Biju Parekkadan

Despite recent breakthroughs in melanoma treatment with anti-PD-1 immunotherapy, innovative approaches are needed to improve off-target effects. In this study, we report a T cell mimetic microparticle delivery of soluble PD1 aiming at providing a carrier substrate for future combinatorial and targeting efforts. Microparticles of sizes varying from (5 μm to-7 μm) were conjugated with soluble mouse or human PD-1 through nearly irreversible binding between streptavidin and biotin. PD-1 conjugated microparticles (PDMPs) suppressed 3-dimensional tumor growth of human A375 and mouse B16-F10 melanoma cells compared to control microparticles conjugated with the Fc portion of human IgG1 (IgG1MPs). This can be attributed to competitive inhibition by PDMPs on a melanoma cell-intrinsic PD-1/PD-L1 pathway. A single, local administration of mPDMPs in a B16-F10 mouse melanoma model inhibited tumor growth significantly compared to control IgMPs at the same dose. CD45+ immune cells were found to infiltrate tumors treated with mPDMPs as a mechanism for tumor control. These results collectively suggest that PDMPs can target the melanoma cell-intrinsic PD-1/PD-L1 pathway and that these artificial T cell mimetics can be the scaffold for further improvements in anti-tumor immunotherapy.