American Journal of Computer Science and Engineering Survey Open Access

  • ISSN: 2349-7238
  • Journal h-index: 9
  • Journal CiteScore: 1.72
  • Journal Impact Factor: 1.11
  • Average acceptance to publication time (5-7 days)
  • Average article processing time (30-45 days) Less than 5 volumes 30 days
    8 - 9 volumes 40 days
    10 and more volumes 45 days
Reach us +32 25889658

Abstract

Forex Data Analysis Using Weka

Luciana Abednego* and Cecilia Esti Nugraheni

This paper conducts some experiments with forex trading data. The data being used is from kaggle.com, a website that provides datasets for machine learning and data scientists. The goal of the experiments is to know how to design many parameters in a forex trading robot. Some questions that want to be investigated are: How far the robot must set the stop loss or target profit level from the open position? When is the best time to apply for a forex robot that works only in a trending market? Which one is better: a forex trading robot that waits for a trending market or a robot that works during a sideways market? To answer these questions, some data visualizations are plotted in many types of graphs. The data representations are built using Weka, an open-source machine learning software. The data visualization helps the trader to design the strategy to trade the forex market.