

Pelagia Research Library

Advances in Applied Science Research, 2012, 3 (3):1861-1863

Behaviour of distributional generalized Fourier Kontorovich-Lebedev Transform

Padmaja A. Gulhane

Deptt. of Mathematics, Govt. College of Engineering, Amravati, India

ABSTRACT

This paper deals with the distributional generalized Fourier-Kontorovich-Lebedev transform, **FKF** transform of distributional function **f** in dual space of $FKF_{a,b,\alpha}^{\Omega}$ i.e. $FKF'_{a,b,\alpha}^{\Omega}$. We have discussed some properties of **FKF** transform. In this paper we have also extended the properties for analytic behaviour on **FKF** transform and discussed the results for different dimensions.

Keywords: Macdonald function, Distributional generalized Fourier-Kontorovich-Lebedev transform, Analytic behaviour.

INTRODUCTION

It is quite well known that there are several problems which can be solved by repeated applications of the Fourier transform and Kontorovich-Lebedev transform. If we construct an integral transform for which kernel is the product of kernels of the Fourier transform and Kontorovich-Lebedev transform, namely Fourier-Kontorovich-Lebedev transform, then without successive use we easily deal with problems occurring in two variables.

The conventional two-sided Fourier-Kontorovich-Lebedev transformation is defined by

$$F(s, q) = \int_{-\infty}^{\infty} f(t, x), \frac{e^{-ist}K_{iq}(x)}{\sqrt{x}} dt dx$$

for a suitably restricted function f(t, x) on $\Omega = \{(t, x)/-\infty < t < \infty, 0 < x < \infty\}$ and $K_{iq}(x)$ is Macdonald function (Lebedev 1965) where q and x are positive variables.

The notation and terminology of the work will follow that of Zemanian [3].

2. Testing function space $FKF_{a, b, \alpha}^{\Omega}$ and its dual :

All infinitely differentiable complex valued functions $\varphi(t, x)$ defined over

$$\Omega = \left\{ \left(t, \ x\right) / -\infty < t < \infty, \ 0 < x < \infty \right\}$$

is said to be a member of the space $FKF_{a, b, \alpha}^{\Omega}$ if it is smooth and for each non negative integer $k = (k_1, k_2) \in \mathbb{R}^2$

$$\begin{split} \gamma_{a,b,\alpha,k}(\varphi) &= \sup_{\substack{-\infty < t < \infty t \\ 0 < x < \infty}} \left| \eta(t,x) D_t^{k_1} \Delta_x^{k_2} \varphi(t,x) \right| \\ &\leq C_q A^k k^{ka}, \ k = 0, 1, 2 \\ \text{where } D_t^{k_1} &= \frac{\partial^{k_1}}{\partial x^{k_1}} \text{ and } \Delta_x^{k_2} = \left(y^2 D_y^2 + 2y D_y - y^2 \right)^{k_2} \text{ and the constants } C_q \text{ and } A \text{ depend on the testing function } \varphi(t,x). \end{split}$$

For k = 0, we get $k^{ka} = 1$. The topology of the space $FKF_{a, b, \alpha}^{\Omega}$ is the space generated by the countable multinorm given by

$$S = \bigcup_{\substack{k_1 = -\infty \\ k_2 = 0}}^{\infty} \left\{ \gamma_{a,b,\alpha,k} \right\}_{.}$$

With this topology $FKF_{a, b, \alpha}^{\Omega}$ is a countably multinorm space. A sequence $\{\varphi_{\nu}\}$ is said to converge in $FKF_{a, b, \alpha}^{\Omega}$ to φ if for each non negative integer l, q,

 $\gamma_{a,b,\alpha,k}(\varphi_{\nu}-\varphi) \rightarrow 0 \text{ as } \nu \rightarrow \infty$

3. Some Properties on the space $FKF_{a, b, \alpha}^{\Omega}$:

One can easily see that $FKF_{a, b, \alpha}^{\Omega}$ is a linear space and $\gamma_{a,b,\alpha,k}$ for each non-negative integer $k \in \mathbb{R}^2$ is a seminorm while $\gamma_{a,b,\alpha,0}$ is a norm. Therefore the collection of seminorms $\{\gamma_{a,b,\alpha,k}\}_{k=0}^{\infty}$ is separating. We equip $FKF_{a, b, \alpha}^{\Omega}$ with the topology generated by seminorm $\{\gamma_{a,b,\alpha,k}\}_{k=0}^{\infty}$ thereby making $FKF_{a, b, \alpha}^{\Omega}$ a countably multinormed space. A sequence $\{\varphi_m(t, x)\}_{m=1}^{\infty}$ in $FKF_{a, b, \alpha}^{\Omega}$ converges to $\varphi(t, x)$ iff for each k, $\gamma_{a,b,\alpha,k}(\varphi_m - \varphi_n) \rightarrow 0$ as m and n tends to ∞ independent of each other.

It can be readily seen that $FKF_{a, b, \alpha}^{\Omega}$ is a sequentially complete locally convex Hausdorff space.

We shall list few properties of $FKF_{a, b, \alpha}^{\Omega}$

i) $D(\Omega) \subset FKF_{a, b, \alpha}^{\Omega}$ and converges in $D(\Omega)$ implies the convergence in $FKF_{a, b, \alpha}^{\Omega}$.

Consequently, the restriction of any $f \in FKF_{a, b, \alpha}^{\Omega}$ to $D(\Omega)$ is in $D'(\Omega)$. Hence the member of $FKF_{a, b, \alpha}^{\Omega}$ are called distributions in the sence of Zemanian [3].

ii) If f(t, x) is locally integrable function defined on Ω such that

$$\int_{-\infty}^{\infty} \int_{0}^{\infty} \left[\eta_{a,b}(t,x) \right]^{-1} f(t,x) dt dx$$

exists then f(t, x) generates a regular generalized function in $FKF'^{\Omega}_{a,b,\alpha}$ defined as $\langle f, \varphi \rangle = \int_{-\infty}^{\infty} \int_{0}^{\infty} f(t,x) \varphi(t,x) dt dx$, where $\varphi \in FKF^{\Omega}_{a,b,\alpha}$ iii) For every fixed s, $\alpha > 0$, q > 0 where $a \le \operatorname{Re} s \le b$ and $\frac{e^{ist} K_{iq}(x)}{\sqrt{x}}$ is a member of $FKF_{a, b, \alpha}^{\Omega}$

4. The distributional two sided Fourier-Kontorovich-Lebedev transform :

For $f(t, x) \in FKF_{a, b, \alpha}^{\Omega}$ there exists a unique open region $\wedge f$ in upper (t, x) plane and $\Omega_f = \{(P, Q) | \sigma_1 < \operatorname{Re} s < \sigma_2, 0 < q < \infty\}$ where σ_1 and σ_2 are infimum and supremum of $\wedge f$. Then the distributional two sided Fourier-Kontorovich-Lebedev transform F(s, q) of f(t, x) is defined as a conventional function on Ω_f by

$$F(s, q) = \left[(FKF)f \right]_{(s, q)} = \left\langle f(t, x), \frac{e^{-ist}K_{iq}(x)}{\sqrt{x}} \right\rangle, \ (s, q) \in \Omega_f$$

where Ω_f is called as region of definition for (FKF)f(t, x). For any fixed $(s, q) \in \Omega_f$ the right hand side of above equation has a meaning as the application of f(t, x) to $\frac{e^{-ist}K_{iq}(x)}{\sqrt{x}} \in FKF_{a, b, \alpha}^{\Omega}$ for fixed $\alpha > 0, q > 0$ and for any α and q such that $\sigma_1 < a \le \operatorname{Re} s \le b < \sigma_2$.

Analyticity Theorem :

If (FKF)f = F(s, q) for $(s, q) \in \Omega_f$ then F(s, q) is analytic on Ω_f and $D^k F(s, q) = \left\langle f(t, x), D^k \frac{e^{-ist}K_{iq}(x)}{\sqrt{x}} \right\rangle$, $(s, q) \in \Omega_f$, where $D^k = \frac{\partial^{|k|}}{\partial^{k_1}\partial^{k_2}}$, $|k| = k_1 + k_2$. **Proof :** Let $D^k F(s, q) - \left\langle f(t, x), D^k \frac{e^{-ist}K_{iq}(x)}{\sqrt{x}} \right\rangle = \left\langle f(t, x), \psi_{\Delta s \Delta y}(t, x) \right\rangle$ Then $\psi_{\Delta s \Delta y}(t, x) \in FKF_{a, b, \alpha}^{\Omega}$ as $|\Delta s| \to 0$ and $|\Delta x| \to 0$.

Hence $\psi_{\Delta s \Delta y}(t, x)$ converges in $FKF_{a, b, \alpha}^{\Omega}$ to zero. Consequently $|\eta(t, x)D_t^{k_1}\Delta_x^{k_2}\psi_{\Delta s \Delta y}(t, x)|$ converges in $FKF_{a, b, \alpha}^{\Omega}$ to zero as $|\Delta s| \to 0$ and $|\Delta x| \to 0$, which proves theorem.

CONCLUSION

Fourier-Kontorovich-Lebedev transform is one of the flourishing field of active research due to its wide range of applications. F-K-L transformation is applied to a larger spaces of generalized functions and extended the theory to solve Dirichlet problem for a wedge with generalized boundary conditions.

REFERENCES

[1] Gudadhe A.S. and Gulhane P.A.Analyticity theorems for Distributional LS Transform,

[2] Science Journal of GVISH, Vol. III, 37-40, April (2006).

[3] Pathak R. S. (1997) : Integral transforms of Generalized Functions and their application, Gorden and Beach Science Publication..

Zemanian A.H. Distribution Theory and Transform Analysis, Mc Graw-Hill, New York (**1965**).