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ABSTRACT

Background: Paragangliomas (PGLs) and Pheochromocytomas (PCCs) are rare cancers. There is not standard of care treatments for these 
cancers. The genomic landscape of PGLs and PCCs is not reported. The aim of this study is to report the mutational difference and assess the 
feasibility of Next Generation Sequencing (NGS) testing by Circulating Tumor DNA (ctDNA) from patients with PGLs and PCCs. 

Methods: Molecular alterations in 46 plasma samples were tested using Guardant360® or Guardant360® CDx ctDNA assays from multiple 
institutions 2016-2021. Single nucleotide variants and indels in 54-83 genes with copy number amplifications and fusions in selected genes 
were detected.

Results: A total of 46 patients (24 PGLs and 22 PCCs) were included. For the 24 PGLs patients, the median age was 55 (range: 28-78); 14 
(58%) were male. Of the 22 PCCs patients, the median age was 56 (range: 28-86); 12 (54.5%) were male. The identified genetic alterations 

TP53 (44%), followed by ATM (25%), FGFR2 
(19%), APC (13%), BRAF (13%), BRCA1 (13%), CCND2 (13%), FGFR3 (13%), IDH2 (13%), KRAS (13%), PDGFRA (13%), RB1 (13%), TERT 
(13%), ALK (6%), ARID1A (6%), BRCA2 (6%), CCND1 (6%), CDK6 (6%), CDK12 (6%), EGFR (6%), FGFR1 (6%), KIT (6%), MET (6%), NF1 
(6%), NRAS (6%), PIK3CA (6%), PTEN (6%) and ROS1 (6%). The 17 PCCs alterations include: TP53 (41%), followed by ATM (35%), NF1 
(24%), FGFR1 (18%), APC (13%), EGFR (12%), MET (12%), MYC (12%), NOTCH (12%), PDGFRA (12%), TSC1 (12%), AR (6%), ARID1A 
(13%), BRAF (6%), BRCA1 (6%), BRCA2 (6%), CCND1(6%), CDK6 (6%), CHEK2 (6%), ERBB2 (6%), EZH2 (6%), FGFR2 (6%), IDH2 (6%), KIT 
(6%), KRAS (6%), NRAS (6%), NTRK1(6%), NTRK2 (6%) and VHL (6%). 

Conclusion: Liquid biopsy was feasible to detect alterations in PGLs and PCCs patients. ctDNA is a non-invasive method with the ability to 
detect alterations that could help personalize the treatment options for patients. We report a high rate of Homologous Recombinant Defi-
ciencies (HRD) among the PGLs/PCCs patients highlighting the need for prospective evaluation on clinical trials.
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INTRODUCTION

Pheochromocytomas (PCCs) and Paragangliomas 
(PGLs) are rare cancers originating from the autonomic 
nervous system PGLs and adrenal medulla PCCs chromaffin 
cells. PCCs and PGLs can be either sympathetic or 
parasympathetic secretory cancers, with the sympathetic 

lesions being more active, symptomatic and common in 
the abdomen and pelvis [1]. PGLs are less common than 
PCCs, and secrete norepinephrine as opposed to the 
PCCs which secrete epinephrine [2]. Most PCCs and PGLs 
tumors are benign with a 15%-20% risk of metastasis 
[3,4]. Both cancers are heterogenous diseases with no 
standard of care treatment guidelines established [5].

PGLs cancers are increasing at a rate of 3-5 fold over 
the past 40 years [6]. This could be related to better 
means of detection due to the improvement in imaging 
and biochemical tests. PGLs can be sporadic or hereditary 
syndromes. Germline variants in PGLs genes are found 
in 40% of patients with PGLs, making the tumor form 
the most heritable of all human malignancies. Somatic 

were present in 16 (67%) PGLs and 17 (77%) PCCs patients. The 16 PGLs mutations include: 
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Health (Guardant360®). Guardant Health ctDNA testing 
is a College of American Pathologists (CAP)-accredited 
and Clinical Laboratory Improvement Amendments 
(CLIA)-certified laboratory and detects Single-Nucleotide 
Variants (SNV), indels, fusions and copy number 
alterations in 83 genes, including the most prevalent 
tumor suppressor genes in human cancers, with a 
reportable range of ≥ 0.04%, ≥ 0.02%, ≥ 0.04% and ≥ 
2.12 copies, respectively, and these include the detection 
of microsatellite instability. The test specificity is at the 
rate of >99.99% [23]. ctDNA gets extracted from the 
plasma using the QIAmp Circulating Nucleic Acid Kit 
(Qiagen, Inc.,). Hybrid-capture sequencing libraries are 
captured from up to 30 ng ctDNA and labeled with non-
random oligonucleotide barcodes (IDT, Inc.,), followed by 
library preparation, hybrid capture enrichment (Agilent 
Technologies, Inc.,), and sequencing at 15,000 × read 
depth of the critical exons in the targeted panel by paired-
end synthesis (NextSeq 500 and/or HiSeq 2500, Illumina, 
Inc.,), these are then reported through bioinformatics 
analysis [24]. NGS data were interpreted by N-of-One, 
Inc., (Lexington, MA, USA).

RESULTS

Patient demographics

Between 2016 and 2021, a total of 46 locally advanced 
unresectable or metastatic disease PCCs and PGLs 
patients underwent Guardant360® or Guardant360® CDx 
testing; 24 PGL and 22 PCC patients. The median age of 
PGLs patients was 55 (range: 28-78); 14 (58%) patients 
were male. The median age of PCC patients was 56 (range: 
28-86); 12 (54.5%) patients were male.

Molecular alterations

Genetic alterations were identified in 16 (67%) PGLs 
and 17 (77%) PCCs patients. In PGLs patients, TP53 
mutation was the most common detected alteration 
(44%), followed by ATM (25%), then FGFR2 (19%), APC 
(13%), BRAF (13%), BRCA1 (13%), CCND2 (13%), FGFR3 
(13%), IDH2 (13%), KRAS (13%), PDGFRA (13%), RB1 
(13%), TERT (13%), ALK (6%), ARID1A (6%), BRCA2 
(6%), CCND1 (6%), CDK6 (6%), CDK12 (6%), EGFR (6%), 
FGFR1 (6%), KIT (6%), MET (6%), NF1 (6%), NRAS (6%), 
PIK3CA (6%), PTEN (6%) and ROS1 (6%). The alteration 
frequencies by gene and types are shown in Table 1.

mutations are common in PGLs [7] and detected in 
around 30% of cases [8,9].

PGLs have consistent histological features that they 
share with PCCs with high heritability rates [10,11]; 
25%-30% of these tumors develop under conditions of 
a hereditary tumor syndrome [12] a third of which affect 
the Von Hippel Lindau (VHL) gene [12] with 25%-30% 
of the tumors having somatic RET, VHL, Neurofibromin 
1 (NF1) and MYC-associated factor X (MAX) mutations 
[13-16]. All PGLs exhibit malignant potential [7], and a 
few harbors malignant potential with (<5%), specifically 
in patients with the hereditary forms, like VHL, Multiple 
Endocrine Neoplasia type 2 (MEN2 with RET), and an 
increased risk of disseminated disease in patients with 
SDHB mutations [17]. Circulating Tumor DNA (ctDNA) 
testing is now performed for all cancer types. As opposed 
to traditional tissue biopsies, liquid biopsies are faster 
to result, less invasive, have the potential to reflect all 
metastatic sites (i.e. tumor heterogeneity), detect current 
(real time) and non-archived mutations, can monitor 
responses of therapy through serial sampling, and carry 
lower cost to perform [18-21]. ctDNA testing is now 
recommended to guide the treatment in many cancer 
types [22]. There is no standard of care for the treatment 
of PGLs and PCCs. Current management is based on case 
series and reports. Understanding the genomic landscape 
is of utmost importance in this disease as it may define 
the treatment through targeted therapies. 

MATERIALS AND METHODS

This is a retrospective analysis of molecular alterations 
in 46 ctDNA samples from PGLs or PCCs patients who 
underwent Guardant360® or Guardant360® CDx from 
different institutions. This test detects single nucleotide 
variants in 54-83 genes, copy number amplifications, 
fusions, and indels in selected genes. Samples from 
patients between the years 2016 and 2021 were 
analyzed. Patient-specific covariates included gender 
and age. Ethical approval was not required given the de-
identified nature of the data collected in a retrospective 
fashion, no consents were required, through a data 
transfer agreement between guardant health and Emory 
University. 

Next Generation Sequencing (NGS)

ctDNA (liquid biopsy) testing was done by Guardant 

Table 1. Ongoing clinical trials which assess different therapies for PPGL.

Trial number and Trial name Study title Estimate/actual number 
of participants Status

NCT05133349 EASOAIPPGL
A prospective phase II efficacy and safety study of anlotinib in 
metastatic or locally advanced pheochromocytoma/paraganglioma: 
Open-label single-arm, exploratory trial

20 Recruiting

NCT03946527 LAMPARA Lanreotide in metastatic pheochromocytoma/paraganglioma 40 Recruiting

NCT03839498 Study of axitinib (AG-013736) with evaluation of the VEGF-pathway 
in pheochromocytoma/paraganglioma 25 Recruiting
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In PCCs patients, TP53 mutation was the most common 
alteration detected (41%), followed by ATM (35%), NF1 
(24%), FGFR1 (18%), APC (13%), EGFR (12%), MET 
(12%), MYC (12%), NOTCH1 (12%), PDGFRA (12%), TSC1 
(12%), AR (6%), ARID1A (13%), BRAF (6%), BRCA1(6%), 
BRCA2 (6%), CCND1 (6%), CDK6 (6%), CHEK2 (6%) 
ERBB2 (6%), EZH2 (6%), FGFR2 (6%), IDH2 (6%), KIT 
(6%), KRAS (6%), NRAS (6%), NTRK1 (6%), NTRK2 (6%) 
and VHL (6%)). These alterations are summarized by 
frequencies and types. In PGLs (21%) and PCCs (41%) 
alterations were associated with targeted therapies that 
are approved in other indications.

DISCUSSION

The genomic landscape and the treatment paradigms 
of PGLs and PCCs cancers are not well established and 

are extrapolated from either case series or from other 
disease states like neuroendocrine tumors. Current 
therapeutic approaches for PPGL include radioactive 
Iodine-131-Metaiodobenzylguanidine (MIBG-Azedra) 
[25,26] selected by the 23I-MIBG scintigraphy scan 
positive in metastatic lesions which constitute about 
50% of all PPGL [27,28]. No other treatments have been 
approved specifically for these tumors. Other radionuclide 
therapy that has been reported is the Peptide Receptor 
Radionuclide Therapy (PRRT) using the radiolabeled 
somatostatin analogue (177LutetiumDOTA0-Tyr3) 
octreotate (177Lu-DOTATATE) extrapolated from 
neuroendocrine tumor treatment. Benign and malignant 
PPGL overexpress somatostatin receptors which is more 
prominent in SDHB gene mutation [29]. Its efficacy and 
safety were assessed by a study of 30 inoperable PPGL 
cases (27 PGLs, 3 PCCs) [30,31].

NCT00843037 SNIPP Study of sunitinib in patients with recurrent paraganglioma/pheo-
chromocytoma 25 Active, not 

recruiting

NCT04924075 MK-6482-015
Belzutifan/MK-6482 for the treatment of advanced Pheochromocy-
toma/Paraganglioma (PPGL) or Pancreatic Neuroendocrine Tumor 
(pNET)

140 Recruiting

NCT03008369
Lenvatinib in treating patients with metastatic or advanced 
pheochromocytoma or paraganglioma that cannot be removed by 
surgery

3
Active, not 
recruiting, 
has results

NCT04860700 The efficacy and safety of anlotinib in patients with metastatic 
pheochromocytoma or paraganglioma 31 Recruiting

NCT03206060 Lu-177-DOTATATE (Lutathera) in therapy of inoperable pheochro-
mocytoma/paraganglioma 90 Recruiting

NCT02302833
Cabozantinib S-malate in treating patients with metastatic pheo-
chromocytomas or paragangliomas that cannot be removed by 
surgery

22 Recruiting

NCT04711135 Study to evaluate safety and dosimetry of lutathera in adolescent 
patients with GEP-NETs and PPGL 8 Recruiting

NCT04394858
Testing the addition of an anticancer drug, olaparib, to the usual 
chemotherapy (Temozolomide) for advanced neuroendocrine 
cancer

76 Recruiting

NCT05142241 RARE2
Testing the combination of anti-cancer drugs talazoparib and 
temozolomide in patients ≥ 18 years old with advanced stage rare 
cancers

34 Recruiting

NCT04276597 PUTNET
Phase-II study of Lu177DOTATOC in adults with STTR(+)pulmonary, 
pheochromocytoma, paraganglioma, unknown primary, thymus 
NETs (PUTNET), or any other Non-GEP-NET

50 Recruiting

NCT00107289
Phase-II study of Lu177DOTATOC in adults with STTR(+)pulmonary, 
pheochromocytoma, paraganglioma, unknown primary, thymus 
NETs (PUTNET), or any other non-GEP-NET

200 Recruiting

NCT02721732 Pembrolizumab in treating patients with rare tumors that cannot be 
removed by surgery or are metastatic 202 Active, not 

recruiting

NCT04400474 The CABATEN Trial of cabozantinib plus atezolizumab in advanced and progres-
sive neoplasms of the endocrine system. The CABATEN study 144 Recruiting

NCT02834013 Nivolumab and ipilimumab in treating patients with rare tumors 818 Recruiting

NCT03034200 Phase 2 study of ONC201 in neuroendocrine tumors 28 Active, Not 
recutting 

NCT03541720 18F-fluorodopamine PET studies of neuroblastoma and pheochro-
mocytoma 20 Recruiting

NCT01850888 MIBG for refractory neuroblastoma and pheochromocytoma 100 Recruiting

NCT04284774
Tipifarnib for the treatment of advanced solid tumors, lymphoma, 
or histiocytic disorders with HRAS gene alterations, a pediatric 
match treatment trial

49 Recruiting
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and approved for selected patients with Acute Myeloid 
Leukemia (AML), Myelodysplastic Syndrome (MDS) 
[56] and cholangiocarcinomas [57,58]. IDH2 alterations 
are present in 13% of the PGLs and 6% of the PCCs as 
reported in this analysis. Other important alterations 
that could be targetable are: BRAF with V600 E mutation 
previously identified in a patient with PCCs [59], 
(Vemurafenib, Encorafenib) [60], PDGFRA/KIT (Imatinib) 
[61-63], MET with exon 14 mutation (Tepotinib) [63-65], 
the latter study showed Exon 14 mutations identified on 
three samples, PIK3CA (Idelalisib, Copanlisib, Duvelisib) 
[66,67], ROS1 (Crisotinib) [68], ERBB2 (Trastuzumab, 
Pertuzumab, Lapatinib, Fam-trastuzumab Derutecan) 
[69-73], EZH2 (Tazemetostat) [74], NTRK (Larotrectinib, 
Entrectinib) [75,76]. 

CONCLUSION

PPGL are rare tumors, and the effectiveness of current 
treatment modalities remains limited throughout the 
literature. There are many limitations to this report. This 
is retrospective analysis of the prevalence of mutations 
in rare cancers. These genomic data were obtained 
from a de-identified database with very limited clinical 
information available. There are no treatments detailed 
and no clinical outcomes. No data available on when 
these samples were obtained (prior or after treatments). 
The gene panel is limited to 74 genes failing only. Another 
limitation is the lack of comparing tissue to liquid testing. 
This study proves that ctDNA genomic testing is feasible 
for PGLs and PCCs diseases and could have important 
implications on patients choosing to participate in trials 
and for physicians to design trials for these drug gable 
targets reported here, specifically the HRD alterations. 
The data lacks the specificities of the anatomic location 
and the burden of disease. Our findings in this paper 
help implement a personalized treatments approach 
that might improve PGLs/PCCs patients’ outcomes. 
Furthermore, the sample size reported here-given the 
rarity of the disease- does not allow clinically meaningful 
survival outcomes even if these survival data were 
available. The need for further studies in the era of NGS 
and its continuous improvement to further identify PPGL 
mutations and thus guiding therapy, is important. We 
prove that liquid genomic testing modality is feasible in 
this rare cancer as these tumors shed circulating DNAs.
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