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Background: In the past four decades, In Vitro Fertilization (IVF) has benefited from substantial 
advancements and become a routine medical procedure. Embryo development can be moderated 
with time lapse systems, but such systems use visible light that can harm cells. Living cells have 
spontaneous Ultraweak Photon Emissions (UPEs) that are generated by metabolic reactions and 
influenced by physiological conditions.

Methods: Embryo-emitted photons were detected with a custom in-house ORCA-Quest CMOS camera 
and microscope incubator system. Images were taken in the dark. Negative control measures were 
taken for an empty vessel and a vessel with only oil and media. Optimal data were collected with all 
software filters off.

Findings: Reference measurements showed only negligible differences between empty and incubation 
medium filled samples. When four cell embryos were removed from their culture incubators for 
examination in laboratory air, light and temperature conditions, degenerated two cell stage embryos 
were observed to have lower UPE levels than cleaving embryos. Fresh embryos had significantly 
greater UPE levels than previously frozen and then thawed embryos.

Interpretation: UPE detection in mouse embryos can provide a foundation for the development of a 
photon emission embryo control system.
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INTRODUCTION
Fertilization outside of the body has become a routine 
gynecological procedure in recent decades. In 1978, the 
fundamental assisted reproduction technique known as In 
Vitro Fertilization (IVF) lead to the birth of the first so-called 
test-tube baby, establishing the possibility for couples 
struggling with infertility to produce biological children. 
Assisted reproduction treatments have enabled more than 8 
million children to be born worldwide. Nowadays, each year, 
some 1·5 million IVF cycles are performed worldwide resulting 
in approximately 350 thousand children. In Hungary, 1·5%-2%
of babies are born due to IVF treatment.

There has been substantial advancement in IVF procedures 
since IVF was first introduced. Typically, stimulated cycles 
yield several oocytes, which allows multiple embryos to 
develop, increasing the chance of pregnancy. Generally, even 
if several embryos are available, patients expect only one or 
two to be transferred at once. This situation raises important 
ethical and practical questions regarding how one should 
select the embryo or embryos to be transferred. The most 
widely used selection method is based on an examination of 
embryo morphology, which can be done by simple 
microscopic viewing or by time lapse techniques that provide 
additional information about the dynamics of embryo 
development. Time-lapse technology introduces the concept 
of stable culture conditions and it enables the continuous 
observation of embryos throughout development albeit with 
a requirement for visible light [1].

Early embryonic development is characterized by rapid cell 
division and the activation of embryonic genes. These 
processes make embryos extremely vulnerable and sensitive 
to environmental influences. The female genital tract organs 
produce eggs and provide a safe environment for gametes 
and embryos while providing protection against visible light 
and radiation exposure. During IVF and especially 
Intracytoplasmic Sperm Injection (ICSI), light can harm 
oocytes and sperm during preparation and can harm embryos 
during incubation, microscopic examination and embryo 
transfer [2-4].

Although toxic effects of Ultraviolet (UV) light on cells are well 
established, the effects of visible light (400~700 nm) are less 
well known. Harmful effects of light may be related to the 
hydrogen peroxide formed in peroxisomes and mitochondria. 
Light can trigger stress gene activation and DNA damage in 
embryos. Within the visible range of light wavelengths, blue 
light (400~500 nm) is orders of magnitude more dangerous 
than longer-wavelength visible light [5-7].

Fertilization, blastocyst development and pregnancy rates are 
higher for embryos handled in light-protected conditions than 
for those handled in conventional light conditions, suggesting 
that a dark environment and light filters can reduce harmful 
environmental effects on embryos in IVF laboratories [8]. 
Thus, to protect gametes and embryos from light exposure, 
IVF practitioners can conduct laboratory procedures in a dark 
environment, which we produce by covering IVF/ICSI devices 
with aluminum foil and placing red filters on laboratory light

sources as well as on the built-in light sources of microscopes 
and IVF workstations.

Living cells have spontaneous Ultraweak Photon Emissions 
(UPEs), mainly in the spectral range of 200 nm-800 nm and 
UPEs have been associated with reactive oxygen species 
[9,10]. UPE intensity varies from a few photons to several 
hundred photons per second per square centimeter, with 
variations being associated with physiological and pathological 
conditions, such as the presence of thermal, chemical and 
mechanical stressors and biological activities, such as those of 
the mitochondrial respiratory chain, cell cycle and cancerous 
growths [11-13].

IVF practitioners have an ethical obligation to use evidence-
based state-of-the art methods. Cellular photon emissions 
might be harnessed to provide protection from visible light. 
Given the extremely low energy of UPEs, it is unknown 
whether it is realistic to detect embryo photon emissions 
under the applied conditions of embryo development. We 
examined this question in the present study by detecting 
photon emissions in mouse embryos.

Theoretical Considerations

The second law of thermodynamics states that the total 
entropy of a closed system is static (Clausius' formulation). In 
the context of living beings with self-replicating properties, 
including embryos, structures have dissipative adaptations 
that enable the absorption, use and emission of energy. 
Energy emission can be measured in the form of image data 
[14-21]. We developed a unique algorithm to separate such 
data from a single delimited region called the Entropy 
Weighted Spectral Fractal Dimension (EW-SFD) algorithm 
[22-25]. We submit the data produced to a structural analysis 
procedure derived from the general fractal dimension 
employing a novel application of fractals that is described in 
detail elsewhere [26].

MATERIALS AND METHODS

Animals Used for Retrieval of the Embryos

Thirty 7-week-old CD1 female mice and 20 9-week-old male 
mice (Charles River, Germany) were housed in Uniprotect 
Ng/M cabinets (Zoonlab Gmbh, Germany), which provided 
controlled temperature (24°C), day/night lighting (12/12) and 
humidity (50%). The animals were given at least 2 weeks to 
acclimate to the environment before being subjected to 
experiments.

Superovulation Treatment, Embryo Retrieval and 
Culture

At 8-12 weeks old, CD1 female mice were injected with 5 IU of 
follicle stimulating hormone (Merional, IBSA Pharma, 
Switzerland); 48 hours later, each of these female mice were 
treated with 5 IU of luteinizing hormone (Chloragon, Ferring, 
Hungary) and placed in shared housing with a CD1 male. Two 
days after co-housing cross-sex mice, at ~1·5 dpc (days post-
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coitum), two and four-cell stage embryos were collected by 
flushing the mice’s fallopian tubes and cultured en masse (10‒
14 embryos/droplet) in 50-μl droplets of KSOM medium 
(Millipore, England) supplemented with 0·4% bovine serum 
albumin under mineral oil at 37°C, 5% CO2 in the air. Culture 
media was replaced after 2 d. These fresh embryos were 
subjected to UPE measurements immediately (2-cell stage 
embryos) or after a 24-hour culture (4-8 cell stage). Only high-
quality embryos were investigated.

Frozen Embryos

Good-quality 6-8-cell-stage embryos were frozen. For 
measurements, frozen embryos were vitrificated and warmed 
with Rapid-i vitrification and warming sets (Vitrolife AG 
Gothenburg, Sweden) and allowed to acclimate to the culture 
media for 1-2 h of culture. The rate of live embryos after 
warming was ˃90%.

Photon Emission Detection

During UPE detection, embryos were cultured in EmbrioSlide 
culture dishes prepared according to the recommendation of 
the manufacturer (Vitrolife, Gothenburg, Sweden). The 
microwells of the equipment made it possible to keep 
embryos still during data collection. UPEs were detected using 
an ORCA-Quest CMOS camera (Hamamatsu Photonics®, 
Japan), which offers single-photon detection sensitivity and 
the ability to track time-dependent photon emission intensity. 
The system was equipped with a quantitative CMOS image 
sensor with maximum spectral response in the 300 nm-1000 
nm range at -20°C. The sensor featured an effective pixel 
count of 4096 × 2304 (horizontal × vertical; pixel size 4.6 µm × 
4.6 µm) and a quantum efficiency of 90% at 475 nm and 33%
at 900 nm. A microscope incubator (Olympus®) provided ideal 
conditions for embryo incubation, enabling photons emitted 
by embryos to be detected by excluding visible light 
in completely dark conditions (Figure 1).

Figure 1: Schematic illustration of CMOS camera, microscope 
incubator and computer instrument complex.

RESULTS
In the first series of biological experiments, embryos cultured 
in an incubator were removed from an incubator 
and examined in laboratory air, light and temperature 
conditions. The samples included live cleaving embryos 
(primarily four and eight cell stage) and degenerated two-cell 
stage embryos. The degenerated two cell stage embryos 
were observed to have significantly decreased photon 
emission levels compared

to the photon emission levels observed for their live cleaving 
counterparts (Figure 2).

Figure 2: Photon emissions of a normally developing (green) 
and a degenerated (black) embryo. EW-SFD values (A) 
obtained for cleaving four-cell to blastocyst stage embryos (B) 
and for two cell-stage degenerated embryos (C).

In a second series of experiments, we obtained continuous 
recordings with a 1-min integration time. The photon emission 
measurement data were evaluated based on entropy, a 
spectral fractal dimension and an entropy weighted spectral 
fractal dimension (Figure 3) and it was demonstrated that the 
blank control, fresh and frozen-thawed samples could be 
distinguished from one another based on analyses of entropy-
weighted spectral fractal dimension data representing 50 h of 
time-compressed continuous time-lapse data collected in the 
dark across 1 min exposures with the embryos held in a 
microscope incubator (Figure 4). The photon emission levels 
observed for the fresh embryos were significantly higher than 
those of embryos that had been frozen and thawed.

Figure 3: Entropy-based evaluation of frozen embryos, normal 
embryos, and background for 50 h of time-compressed data 
with a 1-min integration time.
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Figure 4: Spectral Fractal Dimension (SFD)-based assessment 
of frozen embryos, normal embryos, and background for 50 h 
of time-compressed data with 1-min integration time.
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DISCUSSION
Spontaneous photon emissions of developing mouse embryos 
were detected successfully under ideal incubation conditions, 
without external stimulation, using a custom in-house 
instrument created from an Olympus® microscope incubator 
and a hamamatsu photonics® photon camera with single 
photon detection sensitivity. This approach differs from prior 
embryo photon emission studies in that it obviates the need 
for embryo-stressing stimulation (light, laser or chemical). The 
goal of this line of research is to provide maximal protection 
for gametes and embryos against all physical, chemical and 
biological factors during IVF procedures and assisted 
reproductive technology research.

Bioluminescence is a well-known phenomenon seen across 
phylogenetically diverse organisms. A new field of research 
focused on biophotons is emerging with the aim of quantifying 
cell-emitted photons at quantities too small to be seen. For 
example, Esmaeilpour et al. investigated UPEs from neural 
stem cells and observed UPE intensity was greater before cell 
differentiation than after cell differentiation and suggested 
that UPE measurement may be useful for assessing 
nanoparticle effects on living cells. Subsequently, in a study 
examining how internal factors influence human-cell UPEs, 
Zapata et al. found that UPE levels varied in response to 
disease states (including diabetes, hemiparesis, 
protoporphyria or a typical cold) and brain activity changes. 
They suggested that UPEs represent a natural and promising 
non-invasive spectroscopic variable that may have broad 
diagnostic applications [29].

Importantly, cell-to-cell communication via biophotons 
has been demonstrated in plants, bacteria, animal 
neutrophil granulocytes, kidney cells and neurons [29]. Thus, 
biophotons enable cells to interact without a molecular 
signal, indicating that there are inter-cellular processes that 
are not reliant on molecule-receptor recognition [30-34]. 
Indeed, Potapovich, et al., obtained strong evidence of 
non-chemical intercellular signaling leading to biological 
cellular responses [35]. They found that cells of various 
types appear to generate death signals under oxidative 
stress that can affect target cells over long distances through 
non-aquatic environments, resulting in morphological 
alterations and viability loss. These findings strongly 
support the supposition that biophotons may have 
biological significance.

In a study conducted in the dark, Mayburov found that 
biophotons emitted by older loach (fish) eggs inhibit the 
growth of immature loach eggs [36]. Previously, such 
radiation has been found to enable synchronization of 
development across distant samples. He recognized a pattern 
of binary biophoton data that resembled the exchange 
of binary-coded information over noisy communication 
channels in computer networks, including periodic bursts 
of photons that yielded responses in recipient cells 
suggestive of biophoton mediated encoding of information 
that is similar to that of an analog number time algorithm.

Popp, et al., postulated that UPE biophotons may 
present a wide variety of frequencies that originate 
from DNA and obtained data showing that biophotons are 
coherent and thus hypothesized that such emissions 
may regulate biological processes within organisms [33]. 
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However, it is not yet known whether UPEs are a mere 
byproduct of biological metabolism or are mediating an 
informational or functional role, such as a spectral fingerprint 
of an embryo. More research is needed to determine how 
cells produce, sense and react to photons. In this regard, it is 
interesting to note that Adee, et al., described a bioelectric 
phenomenon wherein cells appear to crackle with electrical 
signals that may act to guide embryonic development and 
wound healing [37]. If so, then it may be possible to harness 
and modify such a bioelectric code for oncological and 
regenerative medicine applications.

CONCLUSION
This study provided a demonstration of the feasibility of UPE 
detection in embryos. UPE detection analysis has the 
potential to be used in an embryo-monitoring system that 
would allow close observation of the developmental, 
physiological and energetic processes of embryos under ideal 
incubation conditions without perturbation from external 
physical or chemical stimulation. We hope that this approach 
may mature into a photon emission embryo control system 
that can provide full metabolic and energetic control of early-
stage embryos and their environments, respectively, together 
with tight control of time lapse photon emission analyses.

LIMITATIONS OF THE STUDY
This study mainly focused on health workers' perceptions in a 
hard-to-reach area who had been trained in iCCM and used 
their basic phones, which they had bought for their everyday 
use. The study can, therefore, not advise in totality 
recommendations for application in areas that are not hard to 
reach and the rural context like Nyaguda sub-location.
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