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ABSTRACT 
 
The present study reveals the effects of non-homogeneity, viscous, gravity, magnetic and thermal fields in the wave 
velocity equations corresponding to Stoneley, Rayleigh and Love waves respectively. The theory of generalized 
surface waves has firstly been developed and then it has been employed to study the surface waves. The wave 
velocity equations have been obtained for Stoneley waves, Rayleigh waves and Love waves, and are in well 
agreement with the corresponding classical result in the absence of viscosity, temperature, gravity, magnetism as 
well as non-homogeneity of the material medium. 
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INTRODUCTION 
 
When seismic waves propagate underground, they are influenced not only by the anisotropy of the media, but also by 
intrinsic viscosity of media given by Carcione [1]. Therefore, in order to accurately describe the underground 
propagation of the seismic waves and then more precisely guide seismic data acquisition, processing and 
interpretation, media models should be chosen that can simultaneously imitate anisotropic characteristics of 
formation and viscoelastic characteristics for numerical simulation and analysis of wave fields As a result, the theory 
of surface waves has been developed by Stoneley [2], Bullen [3], Ewing et. al. [4], Hunters and Jeffreys [5].  
 
The effect of gravity on wave propagation in an elastic solid medium was first considered by Bromwich [6], treating 
the force of gravity as a type of body force. Love [7] extended the work of Bromwich investigated the influence of 
gravity on superfacial waves and showed that the Rayleigh wave velocity is affected by the gravity field. Sezawa [8] 
studied the dispersion of elastic waves propagated on curved surfaces. 
 
The transmission of elastic waves through a stratified solid medium was studied by Thomson [9]. Haskell [10] 
studied the dispersion of surface waves in multilayered media. A source on elastic waves is the monograph of Ewing, 
Jardtezky and Press [11]. Biot [12] studied the influence of gravity on Rayleigh waves, assuming the force of gravity 
to create a type of initial stress of hydrostatic nature and the medium to be incompressible. Taking into account, the 
effect of initial stresses and using Biot’s theory of incremental deformations, Dey modified the work of Jones [13]. 
De and Sengupta [14] studied many problems of elastic waves and vibrations under the influence of gravity field. 
Sengupta and Acharya [15] studied the influence of gravity on the propagation of waves in a thermoelastic layer. 
Brunelle [16] studied the surface wave propagation under initial tension of compression. Wave propagation in a thin 
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two-layered laminated medium with stress couples under initial stresses was studied by Roy [17]. Datta [18] studied 
the effect of gravity on Rayleigh wave propagation in a homogeneous, isotropic elastic solid medium. Goda [19] 
studied the effect of inhomongeneity and anisotropy on Stoneley waves. Recently Abd-Alla and Ahmed [20] studied 
the Rayleigh waves in an orthotropic thermoelastic medium under gravity field and initial stress. Recently, Kakar et 
al. [21] investigated surface waves in non homogeneous, general magneto-thermo, viscoelastic media of higher 
order. 
 
In this work, the problem of nth order viscoelastic surface waves under gravity involving time rate of strain, the 
medium being isotropic and non-homogeneous has been studied under the influence of gravity, magnetic field and 
temperature. Biot’s theory of incremental deformations has been used to obtain the wave velocity equation for 
Stoneley, Rayleigh and Love waves. Further these equations are in complete agreement with the corresponding 
classical results in the absence of viscosity, gravity, magnetic and thermal field, non-homogeneity of the material 
medium. 
 
2   FORMULATION OF THE PROBLEM 
Let M1 and M2 be two non-homogeneous, viscoelastic, isotropic, semi-finite media (Fig.1). They are perfectly 
welded in-contact to prevent any relative motion or sliding before and after the disturbances and that the continuity 
of displacement, stress etc. hold good across the common boundary surface. Further the mechanical properties of M1 
are different from those of M2. These media extend to an infinite great distance from the origin and are separated by 
a plane horizontal boundary and M2 is to be taken above M1. 
 
Let Oxyz be a set of orthogonal Cartesian co-ordinates and let O be the any point on the plane boundary and Oz 
points vertically downward to the medium M1. We consider the possibility of a type of wave traveling in the 
direction Ox, in such a manner that the disturbance is largely confined to the neighborhood of the boundary which 
implies that wave is a surface wave. 
 
It is assume that at any instant, all particles in any line parallel to Oy having equal displacement and all partial 
derivatives with respect to y are zero. Further let us assume that u, v, w is the components of displacements at any 
point (x, y, z) at any time t. 

 
Fig.1 Geometry of the problem 

 
It is also assume that gravitational field produces a hydrostatic initial stress is produced by a slow process of creep 
where the shearing stresses tend to become small or vanish after a long period of time. The equilibrium conditions of 
initial stress are  
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The dynamical equations of motion for three-dimensional non-homogeneous, isotropic, viscoelastic solid medium in 
Cartesian co-ordinates with Eq. (1) are 
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Where ρ be the density of the material medium and ij jiτ τ= V i, j are the stress components. Let us consider that 

the medium is a perfect electric conductor, we take the linearized Maxwell equations governing the electromagnetic 
field, taking into account absence of the displacement current (in system-international unit) in the form 
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                                                                                    (3) 

Where,Ε
ur

,Β
ur

, eµ and eε are electric field, magnetic field induction, permeability and permittivity of the medium. 

The value of magnetic field intensity is 
 

( ) 00,0, iΗ Η = Η + Η
ur ur ur

                                                                                                                                       (4)                                                                        

We consider an orthotropic elastic solid under constant primary magnetic fieldΗ
ur

  acting on y-axis and iΗ
ur

 is the 
perturbation in the magnetic field intensity. 
 
It is assumed that prior to the existence of any disturbance both the media are everywhere at the constant absolute 
temperature T0. 

 
The stress-strain relations for general isotropic, thermo, viscoelastic medium, according to Voigt are [22] 
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where, 
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Introducing Eq. (5) in Eq. (2a), Eq. (2b), Eq. (2c), we get 
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We assume that the non-homogeneities for the media M1 and M2 are given by 
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where λ0, M0, λ'0, µ'0 are elastic constants, whereas β0, β'0 are thermal parameters are ρ0, ρ'0, m, n are constants. 

λ
K
, µ

K
 (K = 0,1,2, .... n) are the parameters associated with Kth order viscoelasticity and β

K
 and (µ

e
)
K
 (K = 1, 2, ....., 

n) are the thermal and magnetic parameters associated with Kth order. T is the absolute temperature over the initial 
temperature T

0
. 

 
Due to temperature rise of the material medium, it has been observed that all the parameters representing elastic 
property, the effect of viscosity and thermal field depends on the temperature and ultimately depends on time t. In a 
thermo viscoelastic solid, the thermal parameters βK (K = 0, 1, ...... n) are given by 

β
K
 = (3λ

K
 + 2µ

K
) αt, where αt be the coefficient of linear expansion of solid. 
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To investigate the surface wave propagation along the direction of Ox, we introduce displacement potential φ (x, z, t) 
and ψ (x, z, t) which are related to the  displacement components as follows: 
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Substituting Eq. (10) in Eqs (8a), (8b) and (8c), we get 
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To determine T, Fourier’s law of heat conduction 
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where K be the thermal conductivity and obeys the law as given by K = K0 emz, 
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 and Cν be the specific heat of the body at constant volume. 

Further, similar relations in medium M2 can be found out by replacing λ
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3   SOLUTION OF THE PROBLEM 
Now our main objective to solve Eq. (11a), Eq. (11b), Eq. (11c) and Eq. (13). 
 
For this, we seek the solutions in the following forms. 
 

(φ, ψ, T,v)= [f (z), j (z), T
1
 (z), h (z)] eiα(x – ct)                                                                                                      (14) 

 
Using Eq. (12) in Eq. (9a), Eq. (9b), Eq. (9c) and Eq. (11), we get a set of differential equations for the medium M1 

as follows: 
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and those for the medium M2 are given by 
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Eq. (15) and Eq. (17) must have exponential solutions in order that f, j, T1, h will describe surface waves, and they 

must become varnishing small as z → ∞. 
 
Hence for the medium M1 
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and similarly for the medium M2 are given by 
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Where λj  and λ'j (j = 1, 2, 3) are the real roots of the eqns. 
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and λ4 , λ'4   = {m + (m2- 4 K1
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Where the symbol used in eqns. (21) and (23) are given by eqns. (16) and (18). 
 
The constants Aj, Bj, Cj (j = 1, 2, 3) are related with A'j, B'j, C'j (j = 1, 2, 3) in Eq. (19a) and Eq. (19b) by means of 

first equations in Eq. (15) and Eq. (17). 
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Equating the coefficients of 3 31 2 1 2 '' ', , , , ,z zz z z ze e e e e eλ λλ λ λ λ− −− − − −  to zero, after substituting Eq. (19a) and Eq. 

(19b) in the first and 3rd equations of Eq. (15) and Eq. (17) respectively, we get 
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Similar result holds for medium M2 and usual symbols replacing by dashes respectively. 

 
4   BOUNDARY CONDITIONS 
(i) The displacement components, temperature and temperature flux at the boundary surface between the media M1 

and M2 must be continuous at all times and positions. 
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Applying the boundary conditions, we get 
 
A1 (1 – i γ1 ζ1) + B1 (1 – i γ2 ζ2) + C1 (1 – i γ3 ζ3) – A'1 (1 – i γ'1 ζ'1)                                                              (26a) 

– B'1 (1 – i γ'2 ζ'2) – C'1 (1 – i γ '3 ζ'3) = 0 

 
C = C'                                                                                                                                                                      (26b) 
 
A1 (γ1 + iζ1) + B1 (γ2 + iζ2) + C1 (γ3 + iζ3) – A'1 (γ'1 + iζ'1)  – B'1 (γ '2 + iζ'2) – C'1 (γ'3 + iζ'3) = 0              (26c) 

 
δ1A1 + δ2 B1 + δ3C1 = δ'1A'1 + δ'2 B'1 + δ'3C'1                                                                                                 (26d) 

 
pλ1δ1A1 + pλ2δ2 B1 + pλ3δ3C1 – p' λ'1δ'1A'1 + p' λ'2δ'2 B'1 – p'λ'3δ'3C'1 = 0                                                 (26e) 

 
*mK [(2i ζ1 + γ1 + ζ1

2 γ1) A1 + (2i ζ2 + γ2 + ζ2
2 γ2) B1 + (2i ζ3 + γ3 + ζ3

2 γ3) C1] 
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= *m'K [(2i ζ'1 + γ'1 + ζ1'2 γ'1) A'1 + (2i ζ'2 + γ'2 + ζ2'2 γ'2) B'1 

+ (2i ζ'3 + γ '3 + ζ3'2 γ'3) C'1]                                                                                                                                  (26f) 

 
*mK [– λ4C]= *m'K [– λ'4 C']                                                                                                                                 (26g) 

 

A1 [( *lK + *( )e Kµ 2
0H ) (ζ1

2 – 1) + 2 *mK (ζ1
2 –iζ1) – *bK δ1] + B1 [( *lK + *( )e Kµ 2

0H ) (ζ2
2 – 1) + 2 *mK (ζ2

2 –

iζ2) – *bK δ2] + C1 [( *lK + *( )e Kµ 2
0H ) (ζ3

2 – 1) + 2 *mK  

 

(ζ3
2 – iζ3) – *bK δ3] = A'1 [( *l' K + *( ' )e Kµ 2

0H )(ζ1'2–1)+2 *m'K (ζ1'2–iζ'1)– *b'K δ'1]+ B'1 [( *l' K + *( ' )e Kµ 2
0H ) 

(ζ2'2 – 1) + 2 *m'K (ζ2'2 – iζ'2) – *b'K δ'2] +C'1[( *l' K + *( ' )e Kµ 2
0H ) (ζ3'2–1) + 2 *m'K (ζ3'2 – iζ'3) – *b'K δ'3]                                                             

                                                                                                                                                                                 (26h) 

where, ζj= 
jλ

α
, ζ'j = 

' jλ
α

, j = 1, 2, 3 

and 

λ*K = ( )
0

n
K

K
K

i cλ α
=

−∑ , *mK = ( )
0

n
K

K
K

i cµ α
=

−∑ , *bK = ( )
0

n
K

K
K

i cβ α
=

−∑ , 

*( )e Kµ = ( )
0

( )
n

K

e K
K

i cµ α
=

−∑ , *l' K  = ( )
0

'
n

K

K
K

i cλ α
=

−∑ , *m'K = ( )
0

'
n

K

K
K

i cµ α
=

−∑ , *b'K = 

( )
0

'
n

K

K
K

i cβ α
=

−∑ , *( ' )e Kµ = ( )
0

( ' )
n

K

e K
K

i cµ α
=

−∑  

 
From Eq. (26b) and Eq. (26g), we have C = C' = 0. Thus there is no propagation of displacement v. Hence SH-waves 
do not occur in this case. 
 
Finally, eliminating the constants A1, B1, C1, A'1, B'1, C'1, from the remaining equations, we get 

 
det (aij )= 0, i, j = 1, 2, 3, 4, 5, 6.                                                                                                                               (27) 

 
Where, 
a11 = 1 – iγ1 ζ1, a12 = 1–iγ2ζ2, a13 = 1–iγ3ζ3, a14 = (i γ'1 ζ'1–1), 

a15 = (i γ '2 ζ'2–1), a16 = (i γ'3 ζ'3 – 1), 

a21 = γ1 + iζ1, a22 = γ2 + iζ2, a23 = γ3 + iζ3, a24 = (γ'1 + i ζ'1), a25 = (γ'2 + iζ'2), 

a26 = (γ'3 + iζ'3), 

a31 = δ1, a32 = δ2, a33 = δ3, a34 = – δ'1, a35 = –δ'2, a36 = –δ'3, 

a41 = pλ1 δ1, a42 = pλ2 δ2, a43 = pλ3 δ3, a44 = –p' λ'1 δ'1, a45 = –p' λ'2 δ'2, 

a46 = –p' λ'3 δ'3, 

a51 = *mK  (2i ζ1 + γ1 + γ1 ζ1
2), a52 = *mK (2i ζ2 + γ2 + γ2 ζ2

2), 

a53 = *mK (2i ζ3 + γ3 + γ3 ζ3
2), 

a54 = *m'K (2i ζ'1 + γ'1 + γ'1 ζ1'2), a55 = *m'K (2i ζ'2 + γ'2 + γ'2 ζ2'2), 

a56 = *m'K (2i ζ'3 + γ'3 + γ'3 ζ3'2), 

a61 = ( *lK + *( )e Kµ 2
0H ) (ζ1

2 – 1) + 2 *mK (ζ1
2 –iζ1) – *bK δ1, 
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a62 = ( *lK + *( )e Kµ 2
0H ) (ζ2

2 – 1) + 2 *mK (ζ2
2 –iζ2) – *bK δ2, 

a63 = ( *lK + *( )e Kµ 2
0H ) (ζ3

2 – 1) + 2 *mK (ζ3
2 – iζ3) – *bK δ3, 

a64 = ( *l' K + *( ' )e Kµ 2
0H ) (ζ1'2–1) + 2 *m'K (ζ1'2–iζ'1)– *b'K δ'1, 

a65 = ( *l' K + *( ' )e Kµ 2
0H ) (ζ2'2 – 1) + 2 *m'K (ζ2'2 – iζ'2) – *b'K δ'2, 

a66 = ( *l' K + *( ' )e Kµ 2
0H ) (ζ3'2–1) + 2 *m'K (ζ3'2 – iζ'3) – *b'K δ'3, 

 
From Eq. (27), we obtain velocity of surface waves in common boundary between two viscoelastic, non-
homogeneous solid media under the influence of thermal and magnetic field, where the viscosity is of general nth 
order involving time rate of change of strain. 
 
5   PARTICULAR CASES 
Stoneley Waves: 
It is the generalised form of Rayleigh waves in which we assume that waves are propagated along the common 
boundary of the two semi-infinite media M1 and M2. Thus Eq. (27) determine the wave velocity equation for 

Stoneley waves in the case of general magneto-thermo viscoelastic, non-homogeneous solid media of nth order 
involving time rate of strain. Clearly from Eq. (27), it is follows that the wave velocity equation for Stoneley waves 
depends upon the non-homogeneity of the material medium, temperature, gravity, magnetic and viscous field. This 
equation, of course, is in well agreement with the corresponding classical result, when the effects of thermal, gravity, 
magnetic and viscous field and non-homogeneity are absent. 
 
Rayleigh Waves: 
To investigate the possibility of Rayleigh waves in a thermo viscoelastic, non-homogeneous elastic media, we 
replace media M2 by vacuum, in the proceeding problem, we also note the SH-waves do not occur in this case. 

Since the temperature difference across the boundary is always small so thermal condition given by 
 

T
hT

z

∂
∂

+ = 0 at z = 0 respectively                                                                                                                          (28) 

 
Thus Eq. (26f) and Eq. (26h) reduces to, 
 

(2i ζ1 + γ1 + γ1 ζ1
2) A1+ (2i ζ2 + γ2 + γ2 ζ2

2) B1+(2i ζ3 + γ3 + γ3 ζ3
2) C1 = 0  (29a) 

[( *lK + *( )e Kµ 2
0H ) (ζ1

2 – 1) + 2 *mK (ζ1
2 –iζ1) – *bK δ1] A1 

+ [( *lK + *( )e Kµ 2
0H ) (ζ2

2 – 1) + 2 *mK (ζ2
2 –iζ2) – *bK δ2] B1 

+ [( *lK + *( )e Kµ 2
0H ) (ζ3

2 – 1) + 2 *mK (ζ3
2 – iζ3) – *bK δ3] C1 = 0                                                                   (29b) 

 
From Eq. (27), we have 
 
(λ1 – h) δ1 A1 + (λ2 – h) δ2 B1 + (λ3 – h) δ3 C1 = 0                                                                                            (29c) 

 
Eliminating A1, B1 and C1 from Eq. (29a), Eq. (29b) and Eq. (29c), we get 

 
det (b

ij
)= 0, i, j = 1, 2, 3.                                                                                                                                            (30) 

 
Where, 
 

b
11

 = (2i ζ1 + γ1 + γ1 ζ1
2), b

12
 = (2i ζ2 + γ2 + γ2 ζ2

2), b
13

 = (2i ζ3 + γ3 + γ3 ζ3
2), 
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b
21

 = [( *lK + *( )e Kµ 2
0H ) (ζ1

2 – 1) + 2 *mK (ζ1
2 –iζ1) – *bK δ1], 

b
22

 = [( *lK + *( )e Kµ 2
0H ) (ζ2

2 – 1) + 2 *mK (ζ2
2 –iζ2) – *bK δ2], 

b
23

 = [( *lK + *( )e Kµ 2
0H ) (ζ3

2 – 1) + 2 *mK (ζ3
2 – iζ3) – *bK δ3], 

b31  = (λ1 – h) δ1, b32=  (λ2 – h) δ2, b33 = (λ3 – h) δ3.                                                                                             (31) 

 
Thus Eq. (30), gives the wave velocity equation for Rayleigh waves in a non-homogeneous, magneto-thermo 
viscoelastic solid media of nth order involving time rate of strain. From Eq. (30), it is follows that Dispersion 
equation of Rayleigh waves depends upon the non-homogeneity, the viscous, gravity, magnetic and thermal fields. 
 
This equation, of course, is in complete agreement with the corresponding classical result by Bullen, when the effects 
of thermal, gravity, magnetic viscous field and non-homogeneity are absent. 
 
Love Waves: 
To investigate the possibility of love waves in a non-homogeneous, viscoelastic solid media, we replace medium M

2
 

is obtained by two horizontal plane surfaces at a distance H-apart, while M
1
 remains infinite. For medium M

1
, the 

displacement component ν remains same as in general case given by Eq. (19). For the medium M
2
, we preserve the 

full solution, since the displacement component along y-axis i.e. no longer diminishes with increasing distance from 
the boundary surface of two media. 
 

Thus  v'  = ( ) ( )4 4' '
1 2

z i x ct z i x ctC e C eλ α λ α+ − − + −+                                                                    (32) 

 
In this case, the boundary conditions are 
 
(i) v and τ

32
 are continuous at z = 0 

(ii) τ'
32

 = 0 at z = –H. 

 
Applying boundary conditions (i) and (ii) and using Eq. (19) and Eq. (26), we get 
 
C= C

1
 + C

2
                                                                                                                                                               (33a) 

 

– *mK λ4C= (µ'
K
)* [λ'4C1

 – λ'4C2
]                                                                                                                               

(33b) 
 

4 4' '
1 2

H HC e C eλ λ− − = 0                                                                                                                                      (33c) 

 
On eliminating the constants C, C

1
 and C

2
 from Eq. (33a), Eq. (33b) and Eq. (33c), we get 

 

tanh (λ'4H)=- ( )
*

4

4' ' *
K

K

λ µ
λ µ

.                                                                                                                                      (34) 

 
Thus Eq. (34) gives the wave velocity equation for Love waves in a non-homogeneous, magneto, thermo viscoelastic 
solid medium of nth order involving time rate of strain. Clearly it depends upon the non-homogeneity, gravity, 
magnetic and viscous fields and independent of thermal field. 
 

CONCLUSION 
 
1. The surface waves in a non-homogeneous, isotropic, viscoelastic solid medium under gravity of nth order 
including time rate of strain are investigated. It is observed that viscoelastic surface waves are affected by the time 
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rate of strain parameters. These parameters influence the wave velocity to an extent depending on the corresponding 
constants characterizing the magneto thermo and viscoelasticity of the material. So the results of this analysis 
become useful in circumstances where these effects cannot be neglected. These velocities depend upon the wave 
number ‘ α ’   confirming that these waves are affected by non-homogeneity of the material medium.  
 
2. Love waves do not depends on temperature; these are only affected by viscous, gravity, magnetic fields and non-
homogeneity of the material medium. In absence of all fields and non-homogeneity, the dispersion equation is in 
complete agreement with the corresponding classical result. 
 
3. Rayleigh waves in a non-homogeneous, general magneto-thermo viscoelastic solid medium of higher order 
including time rate of change of strain we find that the wave velocity equation proves that there is dispersion of 
waves due to the presence of non-homogeneity, temperature, gravity, magnetic field and viscosity. The results are in 
complete agreement with the corresponding classical results in the absence of all fields and compression. 
 
4. The wave velocity equation of Stoneley waves is very similar to the corresponding problem in the classical theory 
of elasticity. The dispersion of waves is due to the presence of non-homogeneity, gravity, magnetic field, temperature 
and viscoelasticity of the solid. Also, wave velocity equation of this generalized type of surface waves is in complete 
agreement with the corresponding classical result in the absence of all fields and non-homogeneity. 
 
5. The solution of wave velocity equation for Stoneley waves cannot be determined by easy analytical methods 
however we can apply numerical techniques to solve this determinantal equation by choosing suitable values of 
physical constants for both media M

1
 and M

2
. 
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