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Abstract
Transcription Factors (TF) are proteins that regulates the transcription of genetic information from DNA to messen-
ger RNA by binding to a specific DNA sequence. Nucleic acid-protein interactions are crucial in regulating transcrip-
tion in biological systems. This work presents a quick and convenient method for constructing tight-binding models 
and offers physical insights into the electronic structure properties of transcription factor complexes and DNA mo-
tifs. The tight binding Hamiltonian parameters are generated using the random forest regression algorithm, which 
reproduces the given ab-initio level calculations with reasonable accuracy. We present a library of residue-level 
parameters derived from extensive electronic structure calculations over various combinations of nucleobases 
and amino acid side chains from high-quality DNA-protein complex structures. As an example, our approach can 
reasonably generate the subtle electronic structure details for the orthologous transcription factors human AP-1 
and Epstein-Barr virus Zta within a few seconds on a laptop. This method potentially enhances our understanding 
of the electronic structure variations of gene-protein interaction complexes, even those involving dozens of pro-
teins and genes. We hope this study offers a powerful tool for analyzing transcription regulation mechanisms at 
the electronic structural level.

Keywords: Transcription Factor (TF); Nucleic acid-protein interactions; Tight-binding models; Electronic struc-
ture properties; Transcription regulation

INTRODUCTION
Protein-DNA interactions play a crucial role in various biological 
processes, such as gene regulation, transcription, DNA 
replication, repair, and packaging [1-4]. For decades, the quest 
to understand the intricate relationships between DNA and 
proteins has been at the heart of biological research [5-10]. 
These nucleic acid-protein interactions usually occur in two 
ways: Non-specifically, such as the interaction between histones 
and DNA, and through highly selective, sequence-specific 
binding, as seen in transcription factors. This distinction is 
essential for numerous biological functions, ranging from gene 
regulation to DNA repair [11]. Eukaryotic DNA is packaged into 

nucleosomes (Figure 1) [12-15]. The Nucleosome Core Particle 
(NCP) is the fundamental unit of DNA packing in eukaryotic 
cells. It consists of an octamer of histone proteins around 
which approximately 150 base pairs of DNA are bound [16-18]. 
The fundamental unit of DNA packing inside eukaryotic cells is 
the Nucleosome Core Particle (NCP), in which approximately 
150 base pairs of DNA are bound around an octamer of histone 
proteins. Transcription Factors (TFs) act as mediators of genetic 
information, directing the complex process of transcription, 
in which DNA is transcribed into RNA, a precursor to protein 
synthesis [6-10,19-21].

The Activator Protein-1 (AP-1) is a regulatory element that is 
present in many promoter and enhancer regions. AP-1 plays 
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a crucial role in regulating gene transcription across various 
biological functions, highlighting its versatility in cellular 
biology [22-25]. And it is characterized by the presence of a 
highly conserved DNA binding domain that contains an N-× 
7-R/K sequence and a basic leucine Zipper (bZip) domain [26-
32]. The relatively poorly conserved leucine zipper region is 
characterized by leucine in the last position of every 7 amino 
acids, and hydrophobic residues [28,33,34]. AP-1 proteins are 
a versatile family of dimeric transcription factors. Jun protein 
is a member of the AP-1 proteins. It has the ability to form 
homodimers or heterodimers with other proteins. The c-Jun 
protein promotes cell cycle progression by repressing the p53 
tumor suppressor and activating cyclin D1. This reduces the 
influence of the Cyclin-dependent Kinase Inhibitor (CDKI) p21, 
facilitating the G1 to S phase transition [35-38].

Figure 1: The hierarchical structure of the chromosome organization with 
emphasis on transcriptional regulation, starting from the chromosome 
level, through chromatin and the nucleosome core particle, to the DNA 
helix. The atomic-resolution structures of the NCP and TF are also given.

Exploring the impact of electron injection on DNA-binding 
proteins is important in various research fields. Ultrafast 
electron transfer occurs during the recognition of various DNA 
sequences by a DNA-binding protein with distinct dynamic 
conformations [39-44]. DNA damage and repair mechanisms 
involve electron transport. For instance, positive charge transfer 
can promote oxidative damage to guanine in DNA, which may 
be related to the presence of mutation sites in the genome [45-
54]. DNA transcription factors such as SoxR and p53, which are 
equipped with redox-active groups, use DNA charge transport 
as a redox sensing mechanism [55-58]. The DNA-mediated 
charge transport might enable signaling between the [4Fe4S] 
clusters in the human DNA primase, polymerase α, and other 
replication and repair high-potential [4Fe4S] proteins [59-63]. 
This DNA charge chemistry serves as both a sensing method 
and a monitor of DNA integrity, which is sensitive to base 
stacking perturbations caused by mismatches or DNA damage.

Quantum chemistry provides chemists with critical insight 
into the electronic structure behavior of DNA or protein 
molecules, but its extensive computational requirements 
limit the scope and variety of systems that can be effectively 
analyzed [64-68]. The Tight-Binding (TB) method offers a more 
practical alternative for describing the electronic Hamiltonian 
using smaller and more sparse matrices [69-74]. In early 
work, the TB model was applied to materials science or solid 

state physics. The TB model has been applied to molecular 
clusters or biomolecular systems [75-81]. Traditionally, the 
TB Hamiltonians have relied on empirical or semi-empirical 
parameters, which raises concerns about their accuracy and 
general applicability [82-89]. A few works are developed to 
improve the accuracy and dependability of TB models through 
the foundation of first-principles calculations [90-92].

The Protein Data Bank (PDB) has provided a continuous influx 
of high-resolution structural data, which has significantly 
advanced our understanding of protein-DNA interactions [93-
96]. The increasing number of high-quality experimental protein 
and DNA structures, including those obtained through X-ray, 
NMR, and cryo-EM techniques, have provided opportunities to 
improve our TB parameters for biological systems. As previously 
proposed, it is possible to derive TB parameters for millions or 
even billions of molecular fragments, which represent most 
occurrences in protein and DNA databases [92,97]. Integrating 
structural insights, especially regarding residue preferences 
in protein-DNA interactions, is essential for understanding 
charge transfer mechanisms. Although accuracy is improved, 
constructing the Hamiltonian is time-consuming due to the cost 
of ab initio calculations and the projection step. Furthermore, 
the resulting ab initio TB Hamiltonian is not transferable to 
new structural configurations, which limits its usefulness for 
electronic structure simulations. Nowadays, machine learning 
algorithm in computational chemistry has been widely used 
to predict interaction energies, molecular forces, electron 
densities, density functionals and various molecular response 
properties [98-114]. The machine learning algorithm can be 
used to predict accurate TB Hamiltonian for unseen structures 
during atomic structure explorations. Therefore, the machine 
learning method for TB Hamiltonian parameterization is 
desired.

In this work, we investigate DNA-protein interactions in 
transcriptional regulation with a focus on transcription factors, 
which regulate the transcription of genetic information 
from DNA to messenger RNA by binding to a specific DNA 
sequences. A comprehensive library of residue-level tight 
binding parameters is constructed from detailed electronic 
structure calculations. The library covers millions of nucleic 
base and amino acid side-chain combinations extracted from 
high-quality DNA-protein complex structures. TB Hamiltonian 
parameters derived from ab-initio calculations are accurately 
generated using a random forest regression algorithm. 
Despite its simplifications, the direct diagonalization of the 
TB Hamiltonian could generate various electronic structure 
properties of DNA-protein complexes. Our approach quickly 
reproduces the electronic structure details of orthologous 
transcription factors, such as human AP-1 and Epstein-Barr virus 
Zta, in seconds using a laptop [115,116]. We anticipate that our 
study will serve as a powerful tool for analyzing transcription 
regulation mechanisms at an electronic structural level. And 
this methodology opens up possibilities for comprehending the 
electronic structure variations observed in millions of protein-
gene complexes or dozens of gene-protein complexes, in the 
big data scenario.
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METHODS AND COMPUTATIONAL 
DETAILS
Construction of the Nucleobase-Amino Acid 
Library 
The DNA-protein complexes contain only the 20 L-amino acids 
and 4 deoxynucleotides, which are generally distinguished by 
their different side chain structures and chemical compositions 
(Figure 2). DNA-backbone interactions are the most numerous 
and contribute to the stability of the DNA-protein complex. In 
contrast, side-chain interactions of the protein are fewer but 
confer specificity by recognizing the unique features of the 
DNA sequence. The TB parameter library currently includes 
collections of all possible combinations of amino acids and 
nucleobases, specifically the Amino Acid/Amino Acid (AA), 
Base/Base (BB), and Amino Acid/Base (AB) interaction patterns. 
Our previous work has thoroughly studied the AA and BB 
conformers, so this study will focus solely on the AB conformers 
[92,97,117]. Note that the BB conformers in previous work 
were generated from customized DNA models using packages 
such as x3DNA [94]. In this work, we have updated the BB 
conformers based on experimental DNA protein structures. The 
procedure to extract each conformer from the available three 
dimensional DNA binding protein structures follows the work 
of Singh and Thornton [118]. This library comprises around 
1.2 million conformers that cover a broad range of nucleic 
acid sequences and protein families, ensuring representation 
across different binding modes. The initial structures in the 
library only contain the coordinates of the heavy atoms. The 
missing hydrogen atoms were added using the tleap module in 
the AmberTools package [119]. Three protonation states were 
calculated for histidine, and 2 possible protonation states were 
considered for other acidic and basic amino acids.

Figure 2: Illustration of one of the studied nucleobase-amino acid 
system (PDB ID: 2H7H), (a) Depiction of the nucleobase’s phosphate 
group linked to a sugar ring, which in turn is bonded to a base. Adjacent 
is the general structure of an amino acid, with its variable side chain 
represented by “R” in a dashed outline, (b) Spatial distribution patterns 
of the interactions between the Cytosine base (CYT) from the nucleotide 
and the Glutamine (GLU) side chain. The clusters highlight various 
conformers

The Data Driven Tight Binding Model for 
Biomolecules
The tight binding model is a robust framework for studying the 
electronic properties of large and intricate molecular systems. 
The foundational principles of the tight binding model for 

molecule systems, including the derivation process, have been 
detailed in previous publications from us or contributions 
by others [92,97,117,120-122]. Here, we only describe our 
methodologies for calculating on-site energies, charge transfer 
couplings, and the Löwdin transformation in our current 
research.

Biomolecules are composed of repeated structural units, 
such as amino acids for proteins and nucleotides for DNA. 
In the tight-binding approximation, electrons have limited 
interactions with non-neighboring sites. The formulas for on-
site energy and transfer integral are provided below:

The summation runs over all possible sites L. However, 
only the neighboring sites need to be considered in the TB 
approximation. And ε represents the on-site energy and t 
represents the transfer integral between sites. ψn refers to the 
molecular orbital of one structural unit n. Therefore, the on-
site energy for site n only requires the potential information of 
site n and its closest neighboring sites C. The formula for on-
site energy can be simplified as follows: 

According to Equation 3, the on-site energy is not solely 
determined by the orbital energy of site n; it also includes 
contributions from adjacent sites, particularly the first set 
of nearest neighbors, denoted as C. The model can take into 
account the impact of neighboring residues on the on-site 
energy.

The transfer integral describes the ability to perform charge 
transfer among neighboring sites, while the on-site energy 
describes the ability to move or inject an electron from a 
specific site. The transfer integral only require the potential of 
site n and n+1, that is 

In this work, we utilize the Löwdin method to minimize 
orbital overlap, as the tight binding model corresponds to the 
orthogonal basis. This enables us to transform the effective 
transfer integral.

Equation 5 defines s as the orbital overlap integral between sites. 
This transformation has minor effects on the on-site energy 
and can be safely ignored if necessary. The TB parameters have 
been extensively studied for pure DNA complexes and protein 
complexes in the previous work [92,123].

In the framework of the tight binding Hamiltonian, the on-
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site energy and transfer integrals are characterized as the 
diagonal and off-diagonal matrix elements, respectively. 
Diagonal elements correspond to the on-site energy for a 
given orbital or site, which signifies the energy level of an 
electron when it is localized at that site. Conversely, off-
diagonal elements quantify the transfer integral, indicative 
of the probability of an electron’s transition between sites, 
which is a measure of the charge transfer couplings within the 
molecular system. Another practical difficulty is the inefficiency 
in constructing the TB Hamiltonian from ab initio calculations. 
Here, the Random Forest (RF) regression is utilized to predict 
TB parameters within the BioTinter-1m framework. The RF 
regression model is employed as a multi-input and multi-
output framework, enabling the simultaneous prediction of all 
TB parameters [124-129]. This method constructs an ensemble 
of decision trees from varied segments of the training data, 
enhancing model diversity and robustness. Each decision tree’s 
construction is guided by random subsets of features, enabling 
nuanced learning from the dataset. The RF model averages 
predictions across all trees to estimate molecular descriptors, 
as implemented in the scikit-learn module in Python [130]. The 
ensemble of 150 trees balances computational efficiency with 
predictive accuracy.

Although various machine learning techniques were explored, 
including deep learning methods, the findings indicate that 
the performance of deep neural networks does not surpass 
that of the RF model [111,131-135]. The limited success 
observed in our studies with deep neural networks can often 
be attributed to insufficient data in the training set. Although 
our library contains millions of biomolecular residues, only a 
few hundreds or thousands of conformers are available for 
each type of AA, BB, or AB combination. Our initial test with the 
deep neural network model implemented in PyTorch resulted 
in a correlation coefficient below 0.92 and was therefore 
not reported. In contrast, the RF model showed the lowest 
correlations of 0.95 or higher (Table S1). Expanding the dataset 
by a factor of 100 or 1000 could potentially enhance the 
predictive capability of deep learning networks and improve 
the overall understanding of biomolecular electronic structure 
variations. In our preliminary evaluations, the deep neural 
network model, implemented using the PyTorch framework, 
exhibited the correlation coefficient of less than 0.91, which 
did not meet our benchmark criteria for inclusion in this 
study [136]. The RF model demonstrated relatively superior 
performance, consistently achieving correlation coefficients 
of 0.95 or above, as detailed in Table S1. We hypothesize that 
augmenting our dataset by an order of magnitude, specifically 
by factors of 100 to 1000, might significantly enhance the ability 
of deep neural network to predict and thereby offer more 
profound insights into the variability of electronic structures in 
biomolecular systems.

After constructing the TB Hamiltonian, we can solve the well-
known eigenvalue equation (HC=EC) directly for electronic 
structure calculations of any bio-molecules. The electron-ion 
dynamics can also be solved within the TB framework. These 
methods are implemented in our in-house code BioTinter 

(Tight-binding model for Biomolecular interactions). Because 
this code carries a TB parameters library of 1.2 million 
conformers, we would also refer to it as BioTinter-1m. The 
workflow of BioTinter is shown in Figure 3.

Figure 3: The workflow and code structure of BioTinter package used 
in this work

The BioTinter framework employs a layered architecture to 
integrate TB parameters into quantum chemistry workflows, 
significantly enhancing the computational efficiency and 
accuracy of molecular simulations involving DNA-protein 
complexes. At its core, the Database (DB) layer hosts an 
extensive library of pre-calculated TB parameters. Absent 
parameters trigger the Quantum Mechanics (QM) layer, which 
calculates needed parameters via interfaces with Orca and 
Gaussian to compute the requisite parameters [137,138]. This 
process is augmented by the bioTB module, as detailed in our 
preceding publications [92,97]. The Machine Learning (ML) 
layer predicts TB parameters for novel conformers, enabling 
the construction of the TB Hamiltonian for simulations. Initial 
structural data for simulations are sourced from the Protein 
Data Bank (PDB), MD trajectories, or tools like x3DNA and 
AlphaFold [94,139]. BioTinter-1m prioritizes a balance between 
speed and accuracy, resorting to on-the-fly QM calculations 
when necessary. This on-the-fly module ensures that even with 
a vast database, the system remains responsive and accurate. 
The upcoming public release of BioTinter-10b may weaken 
this on-the-fly module, as the conformer library is expected to 
expand to 10 billion entries along with deep neutral network 
model.

Simulation Details
In order to construct the TB parameters library, the positions of 
hydrogen atoms were optimized for each dimer using B3LYP/6-
31G (d) calculations. We kept the coordinates of the heavy atoms 
fixed during the optimization process. The on-site energies and 
charge transfer couplings for each dimer are derived from at 
the HF/6-31G (d) and B3LYP/6-31G (d) level according to the 
idea of tight-binding approximation as our previous work 
[92,97]. The solvent effects were considered with the implicit 
solvation model if necessary. Quantum chemistry calculations 
can be performed using either the Gaussian or Orca package, 
both of which have been interfaced with BioTinter.

In the ML layer, the relative positions of molecules are 



Page 33
Du L, et al.

Volume 10 • Issue 03 • 021

described through their Internal Coordinates (IC), the Coulomb 
Matrix (CM) and Smooth Overlap of Atomic Positions (SOAP) 
descriptors. For a comprehensive understanding of CM and 
SOAP descriptors, we recommend referring to existing literature 
[140-143]. Our analysis considers the effect of including or 
excluding hydrogen atoms in these molecular representations. 
Benchmark results reveal that presence of hydrogen atoms 
does not significantly affect our model’s predictions. This 
research primarily uses hydrogen-depleted CM descriptors, 
which are refined using a norm sorting technique. While the 
SOAP model introduces a more complex approach, it only 
slightly improves predictive accuracy. Therefore, our approach 
in BioTinter-1m prioritizes hydrogen-depleted CM descriptors 
for simulating DNA-protein systems.

To illustrate the utility of the Tight-Binding (TB) model, we 
investigate the electronic structure variations in complexes 
involving Activator Protein 1 (AP-1) and Epstein-Barr Virus Zta 
transcription factors with their associated nucleic acids. The 
coordination of this sophisticated computational process is 
facilitated by the Snakemake workflow management system 
[144,145]. Calculations are monitored and streamlined using 
custom Python scripts developed for the BioTinter packages, 
ensuring an automated and efficient workflow. Subsequent 
statistical analysis of the results is performed using R scripts, 
providing a comprehensive assessment of the models’ 
predictive accuracy.

RESULTS AND DISCUSSIONS
TB parameters were calculated for thousands of AB conformers 
to analyze the specialization of amino acid or nucleic base 
distributions in realistic DNA-protein complexes. A complete 
tight binding Hamiltonian can be constructed for any DNA-
protein complex by combining previously reported TB 
parameters from AA and BB libraries [92,97]. After collecting 
the AA, BB, and AB distributions, there are approximately one 
million conformers. This library is useful for describing how 
the conformation ensemble influences TB parameters within 
distinct protein structures. For instance, the TB parameters 
library allows for the extraction of explicit geometric correlation 
with the charge transfer couplings. It is commonly observed 
that the values of the charge transfer couplings rapidly decay, 
decreasing to negligible levels at distances closer than 6.0 Å.

The Principal Component Analysis (PCA) algorithm was used to 
categorize various AB parameters and correlate them with their 
physical properties. Figure 4 displays a two-dimensional (2D) 
plot from PCA that separates the data into distinct clusters. The 
color coding represents different amino acid characteristics: 
Acidic (red), basic (blue), hydrophobic (purple), and polar 
(gray), highlighting the chemical nature of the residues as a 
pivotal factor in the variability of tight binding parameters. The 
numbers in the brackets on the PC1 and PC2 axes of the PCA 
plot represent the percentage of the variance in the dataset 
that is explained by each principal component. This plot also 
demonstrates the intrinsic distribution of parameters within 
each cluster, distinctly influenced by nucleobase type-Adenine 
(ADE), Thymine (THY), Guanine (GUA), and Cytosine (CYT). 
To ensure functional selection independence, TB parameters 
were calculated using the Hartree-Fock (HF) method. For 
comparison, TB parameters were also calculated using the 

B3LYP level method, as shown in Figure S1. The PCA plots 
resulting from the B3LYP calculations confirm the segregation 
of data into distinct clusters, as observed with HF calculations. 
The spatial arrangement of TB parameters in AB conformers is 
primarily determined by the chemical nature and charge state 
of the amino acid residues. Secondary factors include the type 
of nucleobase and the choice of DFT functional. AB conformers. 
The absolute values are used. Histidine is represented in its 3 
protonation states: HID, HIE, and HIP. The x-axis label uses color 
coding to differentiate amino acids based on their chemical 
properties, including hydrophobicity, and polarity, acidity, 
basicity, Figure 5 shows a detailed analysis of the average 
hopping integrals between each of the 4 nucleobases and 20 
standard amino acids. This figure also highlights the varying 
interaction strengths of histidine in its 3 protonation states: 
HID, HIE, and HIP, which reflect the different coupling strengths 
in various biochemical environments. The charge transfer 
integrals between nucleobases and various amino acids 
exhibit significant differences. Each nucleobase has its own 
preferred interacting amino acid with specific charge transfer 
couplings. This is fundamental in comprehending the dynamics 
of DNA-protein interactions at the electronic and molecular 
levels. Aromatic amino acids, such as histidine, phenylalanine, 
tryptophan, and tyrosine, generally exhibit significant charge 
transfer couplings. This phenomenon may be caused by either 
the π-π interaction or the C-H-π interaction, which could 
significantly enhance the possibility of electron transfer. The 
average on-site energy difference for such AB conformers 
is often within 1.0 eV or even lower. Other residues, such as 
Serine (SER), Cysteine (CYS), and Methionine (MET), may also 
have slightly larger couplings involving the oxygen or sulfur 
atom in the side-chain. The on-site energy differences are 
approximately 1.0 eV for MET and CYS involving the sulfur atom, 
while the SER involving the oxygen atom has an on-site energy 
difference as large as 2.0 eV-3.0 eV. The couplings for ILE/ADE 
are relatively large for the LUMO orbitals. However, their on-
site energy difference is as large as 4.0 eV. Similar findings are 
observed with TB parameters calculated at the B3LYP level 
(Figure S2). Averaged over all amino acids, the nucleobases 
have the largest charge transfer integrals for THY (0.026 eV) 
and ADE (0.023 eV), followed by GUA (0.018 eV) and CYT (0.021 
eV). The same trend is observed for the LUMO orbitals, where 
the largest charge transfer integrals have a larger value for ADE 
(0.054 eV) and THY (0.051 eV), and a smaller value for CYT 
(0.050 eV) and GUA (0.033 eV).

Figure 4: The PCA visualization of a spectrum of TB parameters 



Page 34
Du L, et al.

Volume 10 • Issue 03 • 021

involving HOMO and LUMO orbitals. The visualization includes the 4 
types of nucleic bases, which are the components for any possible DNA 
sequence. The confidence ellipse represents a statistical probability of 
95% that encloses a certain percentage of the data points based on their 
distribution along the principal components

Figure 5: Comparative analysis of the average hopping integrals for 
HOMO and LUMO across AB conformers. The absolute values are 
used. Histidine is represented in its three protonation states: HID, 
HIE, and HIP. The x-axis label uses color coding to differentiate amino 
acids based on their chemical properties, including hydrophobicity, and 
polarity, acidity, basicity

Charge transfer couplings are reported to exhibit high sensitivity 
to the structural orientation of molecular fragments. Figure 
S3 shows several AB structure contacts, where each cluster in 
the same AB pairs has significantly different distributions. The 
population of charge transfer couplings is “encoded” in various 
models of geometric contacts, i.e. the π-π interactions, C-H-π 
interactions, the hydrogen bonds or van der Waals contacts. 
The orientation of aromatic molecules can either enhance 
or diminish charge transfer couplings. The chemical diversity 
and specificity of various AB conformers can exhibit subtle 
differences in molecular structure or electronic properties, 
even within seemingly homogeneous groups. Note that 
the charge transfer couplings are not symmetric due to the 
inhomogeneity of DNA-protein structures, and the distribution 
of one type of amino acid in the frame of another reference 
nucleobase residue type is distinct.

As the possible structural changes will influence the electrical 
properties of DNA protein complexes, the reasonable 
description of transfer couplings beyond the empirical formulas 
is very necessary. Figure 6 shows the predictive performance of 
the RF model for the TB parameters of arbitrary conformers, 
in correlating TB parameters library. The intermolecular 
coordinate system uses the distance (r), planar angles (θ, φ), 
and dihedral angles (ψ), providing a detailed set of molecular 
descriptors that encapsulate the spatial orientation of the 
molecules. The Coulomb matrix leverages atomic numbers 
(Z) and interatomic distances (R). This approach highlights 
how electronic properties are influenced by atomic identities 
and their spatial relationships. It emphasizes the importance 
of both atomic composition and geometric arrangements 
in determining the electronic characteristics of molecules. 
These descriptors are essential to machine learning models 
for predicting molecular properties. The correlation between 
actual and predicted on-site energy is very robust, with the 
line of best fit closely aligning with the ideal. The internal 

coordinates can only be successful in predicting the on-
site energy, and often difficult to predict the charge transfer 
couplings. This suggests that the internal molecular geometries 
are also very important.

Figure 6: The predictive performance of the machine learning algorithm 
is evaluated based on 2 types of molecular descriptors, (a) intermolecular 
coordinates and (b) hydrogen-depleted Coulomb matrices. The color-
coded data points represent different nucleobases

We trained the model using the 8:2 training/test ratio. Then, 
one could achieve a unification of accuracy and efficiency to 
construct TB Hamiltonian for realistic DNA, protein or DNA-
protein complexes. To facilitate the use of experimental 
DNA and protein structures, we also compare the molecular 
descriptors with and without hydrogen atoms, and the results 
are shown in the table. The possibility of prediction errors in 
certain scenarios could lead to outliers, we have established 
criteria for identifying similarity between descriptors. These 
criteria include an average distance of less than 0.1 Å between 
2 descriptors treated as vectors, and an angle of less than 30° 
between multidimensional vectors exceeding 3 dimensions. 
This involves ensuring that the average distance between any 2 
descriptors, viewed as vectors, is less than 0.1 Å, and the angle 
between any vectors is less than 30°.

Before examining realistic systems, we first conducted an 
evaluation of the performance of our TB parameters. Figure 
S4 compares the HOMO/LUMO gap for randomly generated 
1000 of dimer and trimer conformers involving nucleobases or 
amino acids. The results indicate that our prediction algorithm 
achieves deviations of 0.1 eV~0.2 eV, which is quite successful 
for such simplified TB model. The randomly generated dimers 
and trimers for AA configurations were derived from existing 
PDB databases, BB structures were partly derived from PDB 
and partly generated by x3DNA, while mixed AB structures 
were mainly derived from dimer and trimer structures at 
transcription factor binding sites. The insights gained from these 
benchmarks can be used to optimize computational strategies 
for modeling biological systems. In addition, the HOMO/LUMO 
gaps for nucleobases typically reflect their electronic properties 
and can vary depending on the computational method used for 
calculations [146-152]. Because the calculated HOMO/LUMO 
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gap at HF level is very large (9 eV~10 eV) than experimental 
values, while B3LYP provide reasonable results (4.0 eV~5.0 
eV). The TB parameters derived from B3LYP calculations would 
be used for realistic DNA-protein complexes in the following 
discussions.

The applicability of the BioTinter-1m model was evaluated by 
studying transcription factors, which are key proteins in the 
regulation of gene expression. They modulate the activation 
and repression of specific genes by binding to adjacent DNA 
sequences. Each transcription factor recognizes and binds 
to a specific sequence in the DNA alphabet (A, C, G, and T) 
known as a consensus site. Jun protein is an AP-1 protein, 
that recognizes 2 versions of a 7-base pair response element, 
either TRE (5΄-TGAGTCA-3΄) with PDB ID: 2H7H or meTRE 
(5΄-MGAGTCA-3΄) where M=5-methylcytosine, with PDB ID: 
5T01. These elements differ only at the first base pair (bp): 
With T:A in TRE and 5mC:G (M:G) in meTRE. c-Jun can form 
both homodimers and heterodimers. Epstein-Barr Virus (EBV) 
Zta is a key transcription factor of the viral lytic cycle that is 
homologous to AP-1. The EBV viral genome is unmethylated, 
but becomes highly methylated during the latent stage of 
the viral cycle [153,154]. Figure 7a illustrates the amino acid 
sequences of the human Jun protein, the Epstein-Barr virus 
Zta protein, and a mutant variant of the Zta protein (S186A), 
referred to as Zta* in this study. Zta* is designed to mimic 
the AP-1 protein in its interaction with the TRE DNA element, 
with the comparison based on the crystal structure identified 
by PDB ID: 2C9L. Both human AP-1 and EBV Zta are bZIP 
family transcription factors that bind the classical TRE. They 
also recognize methylated cytosine residues within different 
sequence contexts [155,156]. The extensive TB parameters 
library is large enough to represent most possible AA, BB and 
AB conformers found in realistic DNA and protein structures, 
with prediction failures under 5% across different systems. 
The introduction of the BioTinter-10m model, encompassing 
10 million conformers, is anticipated to drastically reduce 
prediction errors to less than 0.1%. This process utilizes both 
the extensive TB parameters library and a minimal set of on-
the-fly ab initio calculations, ensuring the robustness and 
accuracy of our predictions.

Figure 7: Comparative analysis of the protein-DNA interaction 
complexes, (a) Sequence alignment of the protein Jun, Zta and Zta* with 
highlighted differences, (b) Sequence alignment of the DNA elements 
TRE, meTRE. Visualization of, (c) Jun/Jun binding to TRE, (d) Jun/
Jun binding to meTRE, and (e) Zta*/Zta* binding to TRE, with the DNA-
protein interface marked by a red circle, and corresponding charge 
transfer networks analysis for HOMO and LUMO orbitals. The size of a 
network node is related to its degree within the network

The Figure 6 presents a comprehensive view of the interaction 
between transcription factors and DNA. Each three-dimensional 
structure is accompanied by a schematic diagram of DNA-
protein interface, highlighting the interactions between amino 
acids and nucleotides, and is complemented by a graphical 
representation of the charge transfer network. The electronic 
Hamiltonian of biological molecules diverges from the simple 
tridiagonal matrix characteristic of linear molecules due to the 
complex stacking arrangements of nucleobases and amino acids 
found in actual DNA-protein structures. In prior research, the 
concept of a knowledge graph was introduced as a visualization 
tool for TB Hamiltonian for biomolecules. In order to construct 
the DNA-protein charge transfer network, each residue is 
represented by a vertex in the graph, and the edge represents 
the strength of charge transfer coupling among residues. To 
keep similar geometric feature as the TF molecules, we use 
the Kamada-Kawai layout to generate the complex network. 
The Kamada-Kawai algorithm is a force-directed graph layout 
algorithm that emphasizes the consistency between the 
geometric distances and graph-theoretic distances between 
nodes [157]. The threshold of significant charge transfer 
coupling is set to be 0.001 eV in this work.

Methylation can cause significant changes in DNA-protein 
interactions, which may result in notable alterations in gene 
expression patterns. Variations in nucleic acid sequences can 
have a significant impact on the distribution of TB Hamiltonian 
matrix elements at the nucleic acid-protein interface. This 
is demonstrated in the binding of the Jun/Jun protein to 
TRE and meTRE sequences, as shown in Figures 7c and 7d. 
Similarly, alterations in protein sequences impact both the 
protein termini and the nucleic acid-protein interface. This  is  
exemplified  in  the interactions of Jun and the Zta* mutant 
protein with the TRE sequence in Figure 7c and 7e. Charge 
transfer networks in these DNA-protein complexes, illustrating 
the intricate pathways of electronic interactions within the 
binding interface.

After constructing the TB Hamiltonian matrix using the 
BioTinter-1m model for a DNA-protein complex, the direct 
diagonalization technique is applied to calculate various 
electronic structure properties. Currently, the HOMO and 
LUMO orbitals for each site are used as the basis functions, of 
course additional frontier orbitals could be easily included in 
our model as basis functions. As shown in Figure 8, the HOMO/
LUMO gap in water solvent is larger than that in vacuum. 
This is quite similar as the results for model systems with 
DFT calculations. The frontier orbitals, especially the HOMO 
and LUMO orbitals are  highlighted  with  complex   network   
methodologies (Figure 8). The network displays the molecular 
orbital with larger node size for each residue that has large 
coefficients. The location of frontier orbitals is generally limited 
to a few amino acids and nucleobases. The distance between 
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nodes is related to their sequence distance. Adjacent nodes 
on the network, indicate they are relatively close in secondary 
sequence structures.

Figure 8: Comparative visualization of molecular orbitals across energy 
levels and the corresponding HOMO/LUMO distributions with complex 
network representation for different transcription factor-DNA complexes 
in (a) vacuum and (b) implicit water solvent. The coloring scheme is the 
same as figure 7.

Despite its simplifications, the complex network analysis 
demonstrates an exceptional ability to place electronic 
structure variants on equal footing. The distribution of the 
HOMO and LUMO orbitals is generally much more dispersed 
in the implicit solvent model than in the vacuum model. The 
frontier orbitals have very distinct feature for each kind of DNA-
protein complex. It is interesting to note that this structurally 
important residue identified as a hub is observed at the DNA-
protein interface or the boundary residues of the DNA chain. In 
the computational model, the number of residues in the DNA 
chain generally does not exceed 20 residues, which may lead 
to boundary residues contributing to the frontier molecular 
orbitals. For the Jun/Jun: meTRE complex, the HOMO/LUMO 
orbitals are primarily distributed across amino acids and 
nucleobases that are relatively distant from each other. This 
distribution could indicate that the electronic structure of 
the complex facilitates charge transfer over long distances, a 
phenomenon that is crucial for many biological processes, such 
as signal transduction and energy transfer. This is consistent 
with the report that Methylation may cause significant changes 
to the photo-stability of nucleic acids, resulting in these sites 
becoming mutational hotspots for diseases such as skin cancer. 
This analysis is helpful to unravel the richness of biological 
electronic structure variants in realistic DNA binding protein 
complexes, which would evolve with fluctuating biomolecules 
structures.

Figure 9 presents a comparative analysis of the electronic 
structures of DNA-protein complexes. The analysis is presented 
through their Density of States (DOS) under vacuum and 
aqueous conditions. The electronic properties are significantly 
influenced by solvent effects, which shift and broaden energy 
states around the HOMO and LUMO levels, as detailed 
in Figure 8. This demonstrates the role of the solvent in 
stabilizing electronic states. The peaks in the DOS become 

more pronounced and concentrated, and there are alterations 
in peak positions and substantial changes in peak intensities. 
These changes underscore the critical impact of the solvent 
on the electronic properties at the DNA-protein interface, 
where HOMO and LUMO are predominantly associated with 
interfacial residues. The Mulliken charges for each residue 
were calculated. Figure S5 displays scatter plots of the Mulliken 
charge populations for DNA/protein complexes in both vacuum 
and aqueous environments. A consistent pattern emerges 
across the complexes Jun/Jun: TRE, Jun/Jun: meTRE, and Zta*/
Zta*: TRE, where the distribution of charges on amino acids 
and nucleobases appears relatively stable in water but exhibits 
subtle shifts in vacuum.

Figure 9: The Density of States (DOS) plots for DNA-protein complexes 
are illustrated, contrasting calculations in vacuum (black line) with those 
in a water solvent environment (red line), (a) The Jun/Jun homodimer 
interacting with the TRE response element, (b) The Jun/Jun homodimer 
with the meTRE response element, (c) The Zta*/Zta* homodimer with 
the TRE element

CONCLUSION
Protein-DNA interactions are essential for various cellular 
processes such as replication, transcription, recombination, 
and DNA repair. Here, a library of Tight-binding (TB) parameters 
has been derived for amino acids and nucleobases, containing 
millions of conformers. Machine learning methods were used 
to predict TB parameters for arbitrary fragments of amino acids 
and nucleobases. The electronic structure variants of the AP-1 
and Epstein-Barr Virus Zta transcription factors were studied in 
relation to their respective transcription factor sequences and 
binding DNA sequences. The direct diagonalization scheme 
was utilized to obtain the tight-binding molecule orbitals. 
Our results, including DOS and frontier molecular orbitals, 
demonstrate significant variations in electronic structure as 
the protein or DNA sequence changes. This work presents a 
cost-effective computational tool for analyzing the electronic 
structure of DNA-protein structures. These insights contribute 
to exemplify the complex interdependence of structure, 
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sequence, and electronic properties in the regulation of gene 
expression.
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