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ABSTRACT 
 
In this paper extended scaled particle approach has used to compute thermodynamic behavior of real fluid. In order 
to predicts closeness of values computed for ultrasonic wave velocity, thermodynamic molar volume and volume 
expansion coefficient simultaneously, needs an assumptions like multiple of molecular weight along with ratio of 
specific heat closer to unity, in liquid state. From the profile of the individual liquids the results are discussed in 
terms of hard sphere cavity diameter and depth of minimum potential (binding energy) at fixed temperature (liquid 
state). 
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INTRODUCTION 
 
The concept of hard sphere (HS) body is useful in development of theories of liquid state. The properties of hard 
sphere provide the theoretical backbone of many equations of state (EOS) for real fluids. The Carnahan-Sterling1 
(EOS) for non attraction rigid spheres provides an accurate representation of compressibility factor (Z) as a function 
of reduced density. There is considerable interest in developing more accurate hard sphere equation to improve 
prediction of interaction of real fluids. The accuracy of (HS-EOS) is to compare (Z, ρ) behavior exact (HS) data 
obtain from molecular simulation results given by many workers. 
 
Alder, and Wainwright2 studied the equation of state and the collision rate for systems containing different number 
of particles. The dependence of the results on the number of particles at various densities, in order to obtain a 
quantitative description of the equilibrium properties along with existence of a first order phase transition for hard 
spheres was discussed. They used molecular dynamics (MD) to study the behavior of a small number of elastic 
spheres in liquid. Alder, Hoover and Young3 used (MD) and obtained high-density (EOS) and entropy for hard disks 
and spheres. Hoover and Ree4, have made a Monte Carlo (MC) determination of the pres-sure and absolute entropy 
of the (HS) solid to confirm the existence of a first order melting transition for a classical many body system of hard 
spheres and to discover the densities of the coexisting phases for liquid ( ρd3 = 0.67) and solid ( ρd3 = 0.74), satisfy 
the thermodynamic equilibrium conditions of equal pressure and chemical potential at constant temperature. Barker 
and Henderson5, used (MC) values for the Radial Distribution Function (RDF) for a system of (HS) fluid.  
 
Adams6 found that the chemical potential is considerably more dependent on the sample size than the pressure. The 
chemical potential was obtained in agreement with that found by integrating over pressure as a function of volume. 
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Their equations produced were closely related to those used in Scaled Particle Theory (SPT).Woodcock7 proposed 
and ap-proximate closed-form representation of the (EOS) for (HS) fluid. He uses the known virial coefficients, to 
reproduces the exact (numerical) (EOS) with a greater accuracy. Erpenbeck and Wood9, studied the equation of state 
of the hard-sphere fluid by a computer simulation method for volumes (1.6 < V0 < 25) with (108 < N < 4000) 
particles and results are compared to the theoretical dependence for the NPT ensemble, to estimates thermodynamic 
limit. The (MD) results are compared with Pade approximants to the virial series and the equation of state was 
compared with a number of analytic expressions for the hard-sphere equation of state. The most widely used EOS 
Carnahan-Sterling (CS) is given below. 
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Several improved hard-sphere equations have been proposed. An accurate analytic and theoretically-based equation 
of state for the Lennard-Jones (LJ) fluid is proposed by Kolafa and Nezbeda9. The equation of Kolafa introduces an 
additional term to the numerator of the (CS) equation. 
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The equation is based on a perturbed virial expansion with a theoretically defined temperature-dependent reference 
hard sphere term. The expansion is written for the Helmholtz free energy which guarantees the thermodynamic 
consistency of the pressure and internal energy. The equation covers much wider range of temperatures (up to seven 
times the critical temperature) than existing equations and is significantly more accurate and has less parameter than 
the best equation available. 
 
The equation of state for pure and binary fluids of hard spheres is proposed by Malijevsky and Veverka10. 
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This equation has the form of the Pade approximant of the rescaled virial series and uses the first seven virial 
coefficients. Hence the equation is superior to the Carnahan-Starling, Erpenbeck-Wood and Kolafa (EOS). It is 
shown that its accuracy is almost the same as the precision of recent simulation data. In contrast to the above 
equations, Yelash and Kraska11 reported a generic (EOS) for the (HS) fluid incorporating the high density limit 
without a pole at = 1. 
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Mehrdad Khanpour and Parsafar12 present a simple method of obtaining various equations of state for hard sphere 
fluid. They used the first several virial coefficients of hard sphere fluid and guess the equations of state by using the 
asymptotic expansion method. Among the equations of state obtained in this way are Percus-Yevick, (SPT) and 
(CS), (EOS). They combined the (MC) results on (HS) fluid with the asymptotic expansion method and many other 
(EOS) for (HS) fluid. Khasare and Deshpande13 developed simple (EOS) for (HS) and (LJ) fluid. 
 
Extended scaled particle theory (ESPT) 14-15 is presently used to calculate thermo-dynamic measurable parameters. 
Since (ESPT) was designed to capture the packing interactions in a (HS) fluid. It would seem to be an ideal theory 
for calculating thermodynamic measurable parameters. The two input parameters are necessary for (ESPT) hard 
sphere fluids are the radius and its binding energy. Khasare16-17 uses (ESPT) for a strong repulsive potential together 
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with a weak attractive potential. 
 
The set of parameters required for calculating ultrasonic wave velocity, density, and volume expansion coefficient is 
not same as that of Gibbs free energy. Many workers observed that above thermodynamic properties are highly 
sensitive to the choice of hard sphere (cavity) radii. Real fluid can be represented by minimum of two parameters 
such as size of the molecule and its binding energy, hence SPT containing single parameter have limited success i.e. 
to reproduce density data, and suitable hard sphere diameter can be selected. Similarly, to reproduce wave velocity 
different size of hard sphere diameter is required. Because hare sphere model for real fluids is not sufficient and 
significant to reproduce density and velocity data simultaneously. Hence it is necessary to extend domain of SPT by 
introducing additional parameters (binding energy!). Khasare modifies basic SPT theory by introducing hard sphere 
cavity diameter along with the concept of binding energy. 
 
Now (HS) system can be considered as an ideal liquids and it is a simple for thermodynamic study. A 
compressibility factor Z(η,βε) for fluid of (LJ) molecules enclosing in a cavity diameter (d) is defined as 
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Where v is volume of cavity containing few chemical units, V is volume, P is a pressure, ρ = N/V is the density, T is 
temperature, ε is binding energy of cluster containing chemical units and kB is Boltzmann constant. 
 
Let λ = λ0 represent a simple system with known properties and λ= λ1 can be a system under consideration. This 
leads to a perturbation theories, which requires only information of reference system. 
 
Here (ESPT) is tested for different types of real liquids at fixed temperature and to begin with, model parameters for 
pure liquid are evaluated by assuming ratio of specific heat equal to unity and suitable average real molecular weight 
of cluster. Molecular weight of cluster comes out to be a real number. Hence its next closest higher integer is first 
assumed and correspondingly ratio of specific heat is assumed. Next using subsequent theoretical domain, model 
parameters for real liquid have been established to estimate thermodynamic properties such as ultrasonic velocity, 
bulk density and volume expansion coefficient. 
 
2. ESPT for Real Fluid : 
Khasare15-17 expressed the pair potential between single molecule with remaining molecules as a sum of reference 
ideal repulsive potential φ0(r) And perturbing term φ1(r). This perturbing term is a sum of non-ideal repulsive 
potentials and attractive potentials term given by following expression. 
 
φ(r) =   φ0(r) +   φ1(r) =   φHS(r) +  λ [  φrep(r) +   φattra(r)]; 0 ≤ λ≤ 1.0           (6) 
  
Where λ   is the perturbing parameter. 
 
Hence final expression 20 for (ESPT) an (EOS) for a real fluid is expressed as 
 
Z = Z0 + Z1                                                                                                     (7) 
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Now relation 17, d = ασ, α6 = 3.0, we have 
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Where α, d and σ are the arbitrary constants, (HS) Diameter and (LJ) parameter respectively. 
 
The other expressions thermodynamically derivable expressions is as given below. 
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For α6 = 3.0 we have 
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The present (EOS) is tested by extending the domain of theory such as the definition η= v/V and 0 < βε < 2.0 for 
real fluid. Here one has to accept the term v/V as the probability for creating a cavity in fluid and in this cavity, 
group of molecule are assumed to be present. In gas phase one chemical unit is sufficient while in liquid state group 
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of chemical units are required to obtained thermodynamic properties, which is natural and logical. In the present 
work ten samples of real fluids are considered at fixed temperature. 
 
S1 = benzonitril[103.1]; S2 = tetrahydrofuran[72.11]; S3 = O- cresol[108.1]; 
 
S4 = 2   methylpropanol[74.12]; S5 = ethylmethylketone[72.11]; S6 = benzene[78.11]; 
 
S7 = acetophenon [120.1]; S8 = clorobenzene [112.6]; S9 = toulene [92.14]; 
 
S10 = bromobenzene [157.1]. 
 

RESULTS AND DISCUSSION 
 
The results are obtained by solving equations (7, 8, 9) containing two model parameters (η, βε). The thermodynamic 
related parameters are presented in (Table 1) and two model parameters (η) and (βε) are presented in (Table 2).  
 
In the fallowing figure different pairs of [;] corresponding to equation (7), equation (8) and equation (9) are plotted 
in red circle, in blue cross and in green circle respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (1): (η) liq  = 0.7715822166; (βε) liq  = 0.8506314831; T = 303.15K 
 
In order to obtain unique choice in terms of [η,βε], i.e. common intersection point in [; = 1=()] plot along with 
necessary condition in terms of model input parameters [ζ, Cp/Cv] are accepted. If one is not ready to accept the 
above choice the common intersection is loosed and have to accept three solutions corresponding to three-
intersection point in [η,τ] plots. This happen only when one select [ζ= 1]. Hence it is necessary to accept the choice 
of [ζ ≥ 1.0]. It is observed that basic model parameters (η) and (βε) are depends upon the choice of [ζ, γ = Cp/Cv] 
thermodynamic variables. 
 
Present type of calculations are useful for bio fluids or polymer liquids where molecular weight and [Cp, Cv] are not 
available. In the present calculations, it is easy to study the size of cluster molecules at various temperatures required 
in medical sciences. 
 
MWeff  = ζ (MW); ζ  = [ζ1, ζ2]   6 
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Table 1: Thermodynamic parameters and assumed model two-thermodynamic parameter [η,βε] for real fluid 
 

S.No (MW) density velocity α ζ1 γ1 ζ2 γ2 
1 103.1 0.9950 140250 0.20175 35.637 1.00 36.0 1.01020 
2 72.11 0.8828 125000 0.32100 15.541 1.00 66.0 1.02955 
3 108.1 1.0487 152500 0.2787 10.673 1.00 11.0 1.03065 
4 74.12 0.7753 110200 0.2040 77.425 1.00 78.0 1.00750 
5 72.11 0.7947 117350 0.2605 33.147 1.00 34.0 1.02582 
6 78.11 0.8685 127110 0.3758 8.6875 1.00 9.00 1.03603 
7 120.1 1.0179 145700 0.1313 109.55 1.00 110. 1.02220 
8 112.6 1.0955 124500 0.2975 12.620 1.00 13.0 1.03015 
9 92.14 0.8756 129200 0.3233 11.145 1.00 12.0 1.07685 
10 157.1 1.4815 114600 0.2754 13.485 1.00 14.0 1.03823 

ζ1=scaling real number; ζ2=scaling integer ;( MW) =molecular weight. 
α= (3) 1/6; m = (3/4); R = (8:314)107; NA = (6:02215)1023; pressure = (1:012928)106; 

 
Table 2:  Model two-parameters [η,βε] for real   fluids 

 
S.No η1 βε1 radius1 η2 βε2 radius2 

1 0.8313918988 1.151765872 10.67662805 0.8318463312 1.154881354 10.71470800 
2 0.7583087738 0.804199584 7.253361909 0.7583074733 0.804189855 7.324074835 
3 0.7826341655 0.893725733 6.989619397 0.7826307304 0.893707584 7.060164760 
4 0.8302034102 1.143387241 13.45541388 0.8301999856 1.143359646 13.48862228 
5 0.7935687066 0.940718809 9.817335313 0.7935638513 0.940688115 9.900815520 
6 0.7294798161 0.719383040 6.090714566 0.7294756514 0.719367141 6.162874417 
7 0.8840796209 1.676756560 16.54628478 0.8834916098 1.668255197 16.56523542 
8 0.7715873593 0.850656284 7.347258674 0.7715848622 0.850641895 7.420266915 
9 0.7570487058 0.800073022 7.060498952 0.7570402708 0.800032294 7.236593386 
10 0.7845861814 0.901757773 7.633235384 0.7845837473 0.901741105 7.729188529 

 
Kalidoss and Srinivasamoorthy 18-19 have studied the earlier14 (EOS) and applied it to binary and ternary liquid 
mixtures using the concept of concentration dependent cavity. Deshpande20 applied earlier14 (EOS) to different real 
fluid mixture. Bhandakkar21 discusses an accurate representation of molecular clusters in liquid mixtures using 
Khasare’s equation of state. 
 

CONCLUSION 
 
It is possible to conclude that minimum size of molecular cluster can be easily simulated at a given temperature 
using computer algebra so that at least three thermodynamic properties could be reproducing with deeper insight in 
liquid state. 
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