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ABSTRACT

In this paper, multi-staging (MLADM) and padé apgroation are employed as tools to improve the perémce
of the Laplace Adomian Decomposition Method (LABBHeme on the Rabinovich-Fabrikant system for tire n
chaotic and chaotic case. We observe that the MLAIDMtions were consistent with the fourth orden&etKutta
(RK4) solutions and that padé approximation doetssuficiently improve the LADM or the MLADM sotuts for
the chaotic and non-chaotic Rabinovich-Fabrikargteyn.

Keywords: Chaos, Rabinovich-Fabrikant system, Laplace Adonfdatomposition method, Multistage, Padé
approximation, Dynamical systems.

INTRODUCTION

Chaos theory is a nonlinear phenomenon that hakcatpns in several disciplines including physiggology,
mathematics, biology, computer science, roboticenemics [1-2], engineering and meteorology. Cltasyistems
are special nonlinear dynamic systems that havespleeial property of been sensitive to initial dtéind. This
property of chaotic systems is generally knowrhas‘butterfly effect” [3].

The Rabinovich—Fabrikant system is a set of eqoatiteveloped by Mikhail Rabinovich and Anatoly Flkdont in
1979 to model waves in non-equilibrium substanddds system is given by a set of three couplednaagi
differential as [4]:

b _ z—-1+x*)+

FriRRAG X X

dy

Fre x(3z+1—x2) +vyy €))
dz

Fran —2z(o + xy)

a, y are constants that control the evolution of thetesy. For some values efandy, the system is chaotic, but for
others it is periodic. Bifurcation studies havewhahat fora = 1.1, y = 0.87 we have a chaotic system ané=
1.5, y = 0.55 correspond to a non-chaotic system [5].

The basic idea of the Laplace Adomian decompositiethod (LADM) was first introduced by Khuri [6-1ADM

is a promising method and has been applied inmglvarious differential equations [8-11]. HowevieADM has
some drawbacks like most semi-analytic schemesidByg the LADM, we obtain a truncated series sotutivhich
does not exhibit the real behaviours of the problemgives a good approximation to the true sofufio a very
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small region. Since the LADM has a very small cogeace region, a multi-staging technique known tes t
Multistage Laplace Adomian Decomposition Method @MQM) is proposed. Padé approximation is also used t
improve the accuracy and convergence region otrimecated series. Padé approximation is a partidyfee of
rational approximation that is known to be bettemt the Taylor series approximation.

The aim of this paper is to apply the LADM and MLBIXo the Rabinovich—Fabrikant system for both claand
non-chaotic case and test the accuracy of the metlith the well known fourth order Runge-Kutta mmdh The

paper also investigates the effect of padé apprtiim on the convergence region of LADM and MLADIhe
computations in this paper were carried out withthdanatica.

MATERIALS AND METHODS
LAPLACE ADOMIAN DECOMPOSITION METHOD (LADM)
In this section, we present a Laplace Adomian demmition method for solving a differential equatiaritten in

operator form as:

Liu + R(w) + N(w)
=y @)

With initial condition
u(x,0) = f(x) 3)

WherelL; is a first-order differential operatoR is a linear operatoty is a non-linear operator andis the source
term. We start by applying Laplace transform tthimides of equation (2) and then apply the int@idition (3).

L[Leu] + LIRW)] + L[N (w)]
= L[g] )

sLlu] = f(x) = L{g] = LIRW)] - L[N ()]

L LI|R LIN
L= 1), £l LIRGOT £INGo) -
S N N N
The LADM defines the solution(x, t) as an infinite series of the form
u(x,t) = Z Uy, (6)
n=0
The non-linear term is expressed in terms of themidn polynomials given by [12]:
N = ) 4, ™
n=0
o Ni Al 8
" oallar |t 4 w ®

Substituting (6) and (7) into (4) gives:

| F@ | LIl LR L[Er-oAn]
L;un]—s+s— e e ©)

From (9), we can define the following recursivenfioita:
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L
gy = 12 29 (10)
ru = LRI £04, a

N S

Applying the inverse Laplace transform to both sid# (10) and (11) we obtain, (n = 0) which is then
substituted into (6).

MULTISTAGE LAPLACE ADOMIAN DECOMPOSITION METHOD (ML  ADM)

An efficient way of ensuring the validity of solatis to differential equations for largét > 0) is by multi-staging
the solution procedure to be employed. [(T] be the interval over which the solutions to thiéedéntial equation
(1) is to be determined. The solution interl@IT] is divided intoN subinterval§n = 1,2, ... ... ... , N) of equal step
size given by = T/N with the interval end points, = nh.

Initially, the LADM scheme is applied to obtain th@proximate solutions of, y and z of (1) over the interval
[0, t;] by using the initial conditior(0), y(0) and z(0) respectively. For obtaining the approximate soluif (1)
over the next intervdk,,t,], we takex(t,),y(t;) and z(t,) as the initial condition. Generally the scheme is
repeated for any with the right endpoints(t,,_,), y(t,,—,) and z(t,,_,) at the previous interval being used as the
initial condition for the intervat,,_4, t;,].

PADE APPROXIMATION
The padé approximation ¥&(x) on[a, b] is the quotient of two polynomial, (x) andQ,,(x) of degreeV andM
respectively. This quotient denoted Ry, (x) is the padé approximation to the functifx) and is given by [13]
as:
Py(x)

12
W (12

Ry/m x) =

Wheref (x) and its derivative must be continuoug at 0. The polynomial®y (x) andQ,,(x) are given by:
N

Py (x) =Zpixi = po + p1x + pox? + - + pyx (13)

i=0

M
Qu(x) =Zqixi =qo + q1x + q2x* + - + qux™ (14)

i=0
To obtain the padé approximatifiy , (x), we sey, = 1. Hence @, (x) becomes
Qu(x) = 1+ qx + qox* + -+ + qux™ (15)

The polynomialsPy (x) andQ,(x) are such that the padé approximatRyy,, (x) agrees withf'(x) atx = 0 and
the derivatives up to th@V + M)th derivative also agree at= 0. Assuming that the padé approximatRyy, (x)

is a series in the form
N+M

Ry/m(x) = Z rixt =1y +rx + 1?4 e+ K 4 (16)
i=0

Then from equation (12) we can write,

RN/M(x)QM(x) —Py(x)=0

N+M

Z rixi] Ii qixi] - [i pixi] =0 17)
i=0 i=0 i=0

234

Pelagia Research Library



Kolebaje O. T.et al Adv. Appl. Sci. Res,, 2013, 4(3):232-243

Collecting coefficients of the powers of in equation (17) results in a setf M + 1 linear equations that can be
solved separately using Mathematica:

—po=0
Toq1 +11—p1 =0
Toqz + 1141 +1, —p2 =0 (18)
Toqz + 114z, + 1241 + 13 —p3 =0
TN-mqm + "nem-19u-1+ v —Pn =0

Tn-m+19m + Tnem+2qm-1+ -+ TG + 1y =0

TN—m+2qm + Tn-m+3qm-1+ -+ Tnve1q1 +Tve2 = 0
TN-m+39m + Tn-m+aqu-1+ =+ Tyi2q1 T Ty3 =0 (19)

"NGQu + Tne1dm-1 + o F Tvem-191 + Tvem = 0
The procedure is to first solve for the unknownsy,, ..., gy in equation (19), the values are then used tamkha

unknownsp,, p,, ..., py in equation (18).

If M is equal taVv, the approximation is called a diagonal padé appration of ordetN. The diagonal padé
approximants are known to be the most effectivel4B

APPLICATION

In this section, we apply the Laplace Adomian degoosition method to the Rabinovich-Fabrikant system
equation (1). The fundamental operation of Laplademian decomposition method is applied to the Ravich-
Fabrikant system is given below:

dx
L [a] = Llyz] = LIy + Llyx*] +1L[x]
L[d ] = 3L[xz] + L[x] — L[x*] + vL[y] (20)

L [a] = —2af[z] — 2L[xyz]

sL[x] — x(0) = L[yz] — L[y] + L[yx?] + yL[x]
sL[y] = y(0) = 3L[xz] + L[x] — L[x*] + yL[y]
sL[z] — z(0) = —2aL[z] — 2L[xyz]

x(0) 1 1 1 y
£ = T2+ < £lyal = SLIy]+ < Llyx?] + L0
(O) 3 1 1 Y
Lly] = — + - . L[xz] +— . L[x] — gL[X 1+ gL[y] (21)
L[z] = @—ﬁﬁ[z] ——L[xyz]

S

The solution of the Rabinovich-Fabrikant systenetathe form

x(t) = YXn X, y(®) = X3V, z(t) = X5 Z,

The non-linear terms are expressed as:

yz= YA, sz = Yn B, xz = Y5 Cy x3 = Yn Dy xyz = Y3 Ey,

Then (21) can be written as a recursive formulpairameterized form as:

oY) = T2 2N | - L[S w22 [Y s, + e[
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L[ZA"Y Y, [ZA"C]+ L[ZA"X ——L[ZA" + 2 L[ZA”Y] 22)
L[Z/’I”Zn] @—ﬂﬁ[z/wz ——L[Z/’I”

Comparing equal powers afin equation (22), we have:

[Xo] - Llvy) = 22 £iz,) = =2
—1 [ x(0) _ o1y _ =120
=L [T] Yo =717 zy=L7 2] (23)
1 1 1 y
L[Xn+1] = ;L[An] - EL[Yn] + ;L[Bn] + ;L[Xn]

3 1 1 Y
L[Yn+1] = EL[Cn] + E['[Xn] —gﬁ[Dn] + E['[Yn]

2a 2
L[Zn+1] = _?L[Zn] - ;L[En]

1 1 1 y
X1 = L [_['[An] - gL[Yn] + ;L[Bn] +§['[Xn]]
1 1
Faws = £74 [S21G1 + £ £1X,1 — £1D,1 + L 1v, 1] 24)

Zps1 =L [_?L[Zn] - E['[En]]

The system is solved with the initial conditio(0) = —1.0, ¥(0) = 0 and z(0) = 0.5. Fora = 1.1, y = 0.87 we
have a chaotic system aad= 1.5, y = 0.55 correspond to a non-chaotic system. The recursiaions (23) and
(24) are evaluated with the aid of Mathematica lttaim the solution up to a 11 terms approximationthe time
range [0, 30] with a time step size 0.01. MLADMirnsplemented by dividing the solution intervl, 30] into 300
subintervalg{n = 1, 2, ... ... ... ,300) of equal step size given hy= 0.1

RESULTS AND DISCUSSION

The Laplace Adomian decomposition method LADM anel Multistage Laplace Adomian decomposition method
MLADM has been applied to the non-chaotic casédefRabinovich-Fabrikant system. Padé approximdtamalso
been applied to the LADM and MLADM results to impeothe convergence region and hence the accurattyeof
results. The 11 term approximate LADM solution dhe corresponding diagonal padé approximants femtm-
chaotic case were obtained and are presented below:

x = —1—0.55t — 0.52625t% + 0.432688t> — 1.19897t* + 0.972412¢t° + 0.181246t° — 0.0512276t7
+ 0.407736t8 + 0.318605t° + 0.0619896¢1°

y = —1.5t + 1.975t2 + 0.0772917¢t3 + 0.118073t* + 0.42832t5 + 1.16637t® — 0.626623t7 — 1.52433¢8
+ 2.50421¢t% — 2.33947¢1°

z= 0.5—1.5t+ 1.5t2 + 0.383333t3 — 2.18146t* + 1.91417t5 — 0.809985t° + 1.30261t7 — 2.59824¢8
+1.31422t° + 2.98515¢1°

_—1-0.245783t — 0.0396009¢ + 1.16674t* — 0.976691t* + 1.24769¢°
s/slpade = 170304217t — 0.319329¢2 — 0.398326t° + 0.0332179¢* + 0.142647t5

B —1.5¢t — 43.1127t2 + 54.9589¢t3 — 66.317t* + 139.266t°
YIs/slpade = 1730 0585¢ — 2.98928t% — 49.7748t3 — 24.5014¢% — 20.0994¢5

05— 0.163207t — 0.548661¢% + 0.357611¢> + 0.310687t* — 0.0700585t°
ZIs/slpade = 1+ 2.67359t — 3.92344t2 — 3.69811¢3 + 2.25856t* + 0.369554¢5
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Table 1: Absolute differences between 11-term LADMind 11-term LADM paq¢ With RK4 solutions (At = 0.01) for ¢ = 1.5, y = 0.55.

|LADM, 91 - RK4¢ 4] |LADM ;46001 = RK4 01

t Ax Ay Az Ax Ay Az
0.15 | 2.192E-11  9.158E-12  3.598E-09 2.330E-10 1.887E-08103E-09
0.45 | 8.647E-05 1.801E-05 6.452E-04 1.482E-04 8.081E-04014E-06
1.05 | 1.066E+00 1.166E+00 4.594E+Q0 6.626E+00 1.883E+0M460E-03
2.10 | 5.340E+02 2.479E+03 5.249E+03 2.471E+01 8.953E+0M19E-01
4,05 | 1.972E+05 2.159E+06 3.763E+(06 9.494E+00 7.687E+0M57&-01
7.10 | 3.741E+07 6.570E+08 1.016E+Q9 9.328E+00 7.099E+0M50E-01
11.30| 3.169E+09 7.231E+10 1.046E+11 9.374E+00 7.417E+00428E-01
16.05 | 9.462E+10 2.484E+12 3.468E+12 9.437E+00 7.881E+00M52E-01
22.10| 2.147E+12 6.196E+13 8.447E+13 9.396E+00 7.837E+00M44&-01
25.65| 9.249E+12 2.767E+14 3.738E+14 9.442E+00 8.129E+00L86E-01
30.00 | 4.314E+13 1.333E+15 1.787E+15 9.476E+00 8.107E+0@66E-01

Table 2: Absolute differences between 11-term MLADMand 11-term MLADM .06 With RK4 solutions (At = 0.01) fora = 1.5, y =
0.55.
IMLADM g0, - RK4,01] [MLADM4460.01 - RK40,01
t Ax Ay Az Ax Ay Az

0.15 | 2.192E-11 9.158E-12 3.598E-09 2.330E-10 1.887E-08103E-09

0.45 | 4.974E-11 2.527E-10 3.083E-10 4.967E-11 2.526E-10083%-10

1.05 | 8.778E-11 6.365E-10 4.644E-11 8.732E-11  6.390E-10644E-11

2.10 | 1.530E-10 2.237E-10 2.379E-10 1.559E-10 2.288E-10451E-10

4.0 | 2.174E-11  1.906E-11 3.673E-11 | 2.174F-11 1.906E-11 3.673E-11

7.1C | 1.520E-12 4.360E-12 7.880E-13 | 1.530F-12 4.340E-12 7.880E-13

11.30 | 2.300E-13  7.440E-12 5.400E-13 2.400E-13 7.430E-1239(&-13

16.05| 1.070E-12 9.350E-12 2.312E-12 1.070E-12 9.350E-12312E-12

22.10| 5.300E-12 2.061E-11 4.845E-12 5.298E-12 2.061E-11851E-12

25.65| 1.354E-12 1.161E-11 6.250E-13 1.354E-12 1.161E-112506-13

30.00 | 5.548E-12 6.353E-11 1.026E-11 4.643E-12 4.575E-11484E-12

The accuracy of the LADM and MLADM and the effedtp@dé approximation is investigated by comparhmgjrt
solutions to the RK4 solution for the parametets 1.5, y = 0.55 where the system is non-chaotic with the initial
conditionsx(0) = —1.0, y(0) = 0and z(0) = 0.5. The RK4 with time stepAt = 0.01 with the number of
significant digits set to 16 is used. Table 1 pnesehe absolute differences between the 11-terfdMAsolutions
and the padé approximated LADM solutionsdot 1.5, y = 0.55 and the RK4 solutions. The absolute differences
between the MLADM solutions and the padé approxéudMLADM results and the RK4 solutions are preserite
Table 2.

In Table 1, we can observe that LADM only givesidaksult fort «< 1 i.e. LADM does not give reliable results
aftert = 0.45. The absolute difference between the LADM andRKe&l solutions are as high as a million (LE+06)
just aftert = 4.05 and gave absolute difference of order 1E+15 aftei30. Application of padé approximation to
the truncated series used for the LADM solutionriowes considerably the performance of the LADM scldut
still does not produce desirable or acceptable latesaifference. The padé approximated LADM solatigave
absolute difference of the order of 1E+01 at tHatgm interval.

From Table 2, we observe that the MLADM solutiomegggwith the RK4 solution to at least 8 decimatpkafor the
non-chaotic case. This shows that multi-stagingrepie applied to the LADM scheme is an effectivetimod for
solving the non-chaotic Rabinovich-Fabrikant systdime padé approximated MLADM solution gave compbra
results with the ordinary MLADM scheme but withcanny noticeable improvements. Hence, MLADM scheme
without padé approximation is sufficient for solgithe non-chaotic Rabinovich-Fabrikant system.

Thex —y,x — z,y — z andx — y — z phase portraits for the non-chaotic case obtaiséth the 11-term MLADM
solutions are respectively shown in Figure 1 taiFegd.
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Figure 1: X-Y Phase portrait using 11-term MLADM on At = 0.01 fora = 1.5, y = 0.55.
Z

0.8

0.6 |

0.2t
Figure 2: Y-Z Phase portrait using 11-term MLADM on At = 0.01 for ¢ = 1.5, y = 0.55.
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Figure 3: X-Z Phase portrait using 11-term MLADM on At = 0.01 for ¢ = 1.5, y = 0.55.

Figure 4: X-Y-Z Phase portrait using 11-term MLADM on At = 0.01 fora = 1.5, y = 0.55.

The 11 term approximate LADM solution and the cgpanding diagonal padé approximants for the chaotic
Rabinovich-Fabrikant system = 1.1, y = 0.87) were obtained as:

x = —1-0.87t — 0.75345t% — 0.336t> — 0.683627t* + 0.0837543t> + 1.02679t° + 1.69623t” + 2.11575¢t®
+ 2.15503¢° + 1.73951¢° + -
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y = —1.5t + 1.215t% + 1.73183t> + 1.3385¢* + 1.13646t> + 1.73087t° + 1.07902t” — 0.811878¢*®

— 2.10469t° — 3.09986¢1% + ---

z= 05— 1.1t + 0.46t> + 0.732667t> — 0.238792t* — 0.409795¢t> — 0.171489t° + 0.825099¢”

+0.0350825t% — 0.772747t° + 0.0268586¢° + ---

—1+ 1.04785t — 0.336679t2 + 0.297421¢t3 — 0.956598t* + 1.06331¢t°

X[5/5] pade =

YVI5/s5]pade =

0.5 — 0.828568t + 0.174171t% + 0.359839¢> + 0.132884t* — 0.0360036t°

1—-1.91785¢t + 1.25176t? — 0.277448t3 + 0.215612t* — 0.0675913¢t>

—1.5t + 3.68511t2 — 2.12673t% + 1.75259t* — 1.64915¢°

1—1.64674t + 1.23851t2 — 1.17412¢t3 + 0.866521t* + 0.357742t5

Z[5/5] pade =

1+ 0.542864t + 0.622643t2? + 0.124724t3 — 0.260564t* — 0.544664t5

The absolute differences between the 11-term LADMitions and the padé approximated LADM solutions
fora = 1.1, y = 0.87 and the RK4 solutions are presented in Table 3ewthie absolute differences between the
MLADM solutions and the padé approximated MLADMults and the RK4 solutions are presented in Table 4

From Table 3, we also observe that LADM only givedid result fort «< 1 similar to what was obtained for the
non-chaotic case. The absolute difference betwleedl ADM and the RK4 solutions are of order 1E+1teaf =
30. Also, the padé approximated LADM scheme perforineiter than the ordinary LADM scheme for the chaot

Rabinovich-Fabrikant system but still gave an ueatable absolute difference of the order 1E+01.

Table 3: Absolute differences between 11-term LADMind 11-term LADM paq¢ With RK4 solutions (At = 0.01) fora = 1.1, y = 0.87.

|ILADMg; - RK4¢ 4]

|LADM,1460.01 = RK4,01]

t Ax Ay Az Ax Ay Az
0.15 | 2.407E-10 4.552E-09 6.828E-10 5.124E-10 7.607E-10626E-10
0.45 | 4.003E-04 1.048E-03 8517E-0b 4.337E-04  3.970E-04.843-07
1.05 | 1.067E+01 2.777E+00 5.612E-01 2.671E+00 1.882E+00342E-02
2.10 | 5.788E+03 6.718E+03 4.383E+(02 2.059E+01 3.364E+0M417E+00
4.05 | 2.885E+06 4.327E+06 1.786E+(Q05 4.412E+01 3.198E+00485£&-01
7.1C | 6.804E+0! 1.110E+0! 2.574E+0 | 2.183E+0 4.182E+0f 3.616E-01
11.30 | 6.613E+10 1.117E+11 1.381E+Q9 1.840E+01 4.822E+00061E-01
16.05| 2.135E+12 3.668E+12 2.377E+10 1.674E+01 3.799E+00961E-01
22.10| 5.118E+13 8.884E+13 2.212E+11 1.675E+01 4.621E+00347&-01
25.65 | 2.252E+14 3.924E+14 3.903E+11 1.656E+01 5.575E+00167&-01
30.00 | 1.071E+15 1.872E+15 6.907E+11 1.549E+01 5.417E+00458&-01

Table 4: Absolute differences between 11-term MLADMand 11-term MLADM pa46 With RK4 solutions (At = 0.01) fora = 1.1, y =
0.87.
[MLADM, o, - RK4,4| |[MLADM,,,4¢0.01 - RK4g,04]
t Ax Ay Az | Ax Ay Az

0.15 | 2.407E-10 4.552E-09 6.828E-]]0 5.124E-10 7.607E-10626E-10

0.45 | 4.064E-10 3.177E-10 4.378E—]]0 3.990E-10 3.175E-10378E-10

1.0 | 7.022E-11 5.363E-10 3.718E-10 | 7.578E-11 5.345E-10 3.718E-10

2.10 | 2.435E-10 4.909E-11 4.626E-]]0 2.708E-10 1.571E-11508E-10

4,05 | 2.417E-11 1.541E-11 1.839E-]]l 2.417E-11 1.541E-11839E-11

7.10 | 1.224E-09 1.553E-09 9.840E—]]0 5.618E-10 2.487E-09744F-10

11.30| 4.385E-10 1.947E-11 1.583E-]]0 4.660E-10 1.983E-10004E-11

16.05| 8.462E-10 7.770E-10 6.206E-10 8.443E-10 7.770E-10206&-10

22.1C | 3.171F-11 7.643E-11 3.571F-11 | 3.235F-11 8.278E-11 4.526E-11

25.65| 6.414E-12 9.170E-12 3.612E-11 6.414E-12 9.170E-12612E-11

30.00 | 1.762E-06 8.250E-06 1.779E-Q8 1.463E-06 1.330E-0720QE-08

From Table 4, we observe that the MLADM solutiomegggwith the RK4 solution to at least 5 decimatpkafor the
chaotic case. The padé approximated MLADM soluéiso does not improve on the ordinary MLADM scheand
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is therefore unnecessary. The—y,x —z,y —z and x — y — z phase portraits for the chaotic Rabinovich-
Fabrikant system obtained using the 11-term MLADNUBons are presented in Figure 5 to Figure 8aesyely.
Y

2.5 ¢
2 L
1.5 ¢+
1t
0.5 +
L L x
-2 0.25
-0.5 ¢t
Figure 5: X-Y Phase portrait using 11-term MLADM on At = 0.01 fora = 1.1, y = 0.87.
z
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1.2 ¢
1+
0.8
0.6
L L L L L I Y
-0.5 0.5 1 1.5 2 2.5

Figure 6: Y-Z Phase portrait using 11-term MLADM on At = 0.01fora =1.1, y = 0.87.
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Figure 7: X-Z Phase portrait using 11-term MLADM on At = 0.01fora =1.1, y = 0.87.

0

Figure 8: X-Y-Z Phase portrait using 11-term MLADM on At = 0.01 fora = 1.1, y = 0.87.
CONCLUSION

In this work, multi-staging (MLADM) and padé appimation are employed as tools to improve the perforce of

the Laplace Adomian Decomposition Method (LADM) egte on the Rabinovich-Fabrikant system. Comparisons
were made between these methods and the fourth-8uege-Kutta (RK4) method. For the chaotic and-non
chaotic case, we observe that the MLADM solutionsrevconsistent with the RK4 solutions and that padé
approximation does not sufficiently improve the LKDor the MLADM solutions. Conclusively, multi-stayg
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employed with the LADM scheme in MLADM is a simpdnd accurate method of solving the Rabinovich-
Fabrikant system and by extension other similatinear systems.

REFERENCES

[1] Kyrtsou, C. and Vorlow, CNew Trends in Macroeconomi@)05 15, 150-159.

[2] Kyrtsou C. and Labys WJournal of Macroeconomic2006 28, 256—266.

[3] Lorenz, E.N.Journal of the Atmospheric Scienc&863 20(2), 130-141.

[4] Rabinovich, M.I. and Fabrikant, A. LSov. Phys. JETR,979 50(31).

[5] Danca, M.F. and Chen, Gnternational Journal of Bifurcation and Chad®)04 14(10), 3409-3447.

[6] S.A. Khuri.,J Math. Appl.2001, 4, 141 - 155.

[7] S.A. Khuri.,Appl. Math. Comput2004 147, 131 - 136

[8] E. Yusufoglu. Appl. Math. Comput2006 177, 572 - 580.

[9] S.N. Elgazery.Chaos, Solitons and Fractal2008 35, 738 - 746.

[10] M. Hussain and M. KhanAppl. Math. Sci.201Q 4(36), 1769 - 1783.

[11] S. O. Ajibola, O. T. Kolebaje and S. O. Sedahaternational Journal of Applied Mathematical Resdg
2013 2(1), 116-124.

[12] Adomian G.; Solving Frontier Problems in PlegsiThe Decomposition MethoKJuwer Academic Publishers,
1994

[13] Baker, G. A.; Essentials of Padé ApproximaAisademic Pres4,975

[14] Baker G.A. Jr. and Graves-Morris P.R.; Padergimants, Cambridge University Pre$896

243
Pelagia Research Library



