

EuroSciCon Conference on

Biochemical, Chemical Engineering & Mass Spectrometry

November 19-20, 2018 Prague, Czech Republic

Arch Chem 2018, Volume: 2 DOI: 10.21767/2572-4657-C4-012

THE TG/DSC COUPLING AT THE MS TO DETERMINATION AND CHARACTERIZATIONS OF RE3+ LUMINOPHORS

Rodrigo V Rodrigues^{1,3}, Lukasz Marciniak², Alex S Borges³, Emanuel J B Muri³, Latif U Khan¹, Antonio A L Marins³ and Wieslaw Strek²

¹Institute of Chemistry-São Paulo University, Brazil

²Institute of Low Temperature Structure and Research-Polish Academy of Science, Poland ³Federal Institute of Espírito Santo (UFES), Brazil

Thermal analytical techniques were used to analyse gaseous products evolved during the co-firing of coal with refuse derived fuels. The combined thermogravimetric (TG/DSC) coupling with mass spectrometry (MS) techniques were employed to study and characterize the behaviour pathways for the formation of gaseous products during combustion, such as CI, HCI, CO, CO2, H₂O, NO₂, SO₂ and others organic compounds. The discovery of molecular CO₂, H₂O, NO₂ and SO₂ led us to look for the possible formation of oxysulfate luminophors compounds (RE₂O₂SO₄) in the combustion process. NO2, SO2 species are released in the different temperatures and changed according to RE³⁺ ratio range and in higher concentrations during fast heating rates compared to relatively slow ones. These results confirm the optimal temperature of RE2O2SO4 stabilization and formation of this compound; in particular at the Tb³⁺ (green emission colour) ion due to the probability of oxidation to Tb⁴⁺.

rodv16429@hotmail.com rodv16429@usp.br